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Abstract

Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone traditionally known for its insulinotropic and
adipogenic effects. However, its role in immune modulation and inflammation has recently gained attention, particularly
in the context of metabolic diseases. By conducting a comprehensive search into the scientific literature since the dis-
covery of GIP hormone, this review examines the biological evidences linking GIP and inflammation in pre-clinical and
clinical studies. Pharmacological approaches targeting the GIP receptor (GIPR) with effects on inflammatory processes
are discussed as well, including the latest GIP-based multi-target approaches. The impact of GIP on inflammation appears
context-dependent and influenced by tissue-specific receptor expression and metabolic status. While GIP has been shown
to exert both pro- and anti-inflammatory effects in experimental models, clinical data are still limited. The success of GIP/
glucagon-like peptide-1 (GLP-1) dual agonists in improving glycometabolic and inflammatory outcomes, highlighted the
need to disentangle the individual contributions of each pathway. GIPR remains a promising, yet understudied, target in
immunometabolism. Future studies are needed to clarify the molecular mechanisms underpinning GIP’s immunomodula-

tory actions and evaluate the anti-inflammatory potential of GIP-targeting therapies in clinical settings.
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Introduction

Glucose-dependent insulinotropic polypeptide (GIP) is one of
the main physiological incretin hormones [1]. Initially identi-
fied for the ability to inhibit gastric acid secretion, GIP was later
characterized for its insulinotropic effects and its role in lipid
storage and adipogenesis [2]. For a long time, it was considered
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metabolically redundant and largely overshadowed by its
counterpart, glucagon-like peptide-1 (GLP-1), mainly due to
reduced efficacy in individuals with type 2 diabetes mellitus
(T2D) and obesity, and association with weight gain in some
preclinical studies [3, 4]. The recent development and clinical
success of dual GIP/GLP-1 receptor agonists have revitalized
interest in GIP pharmacology. These agents have demonstrated
remarkable metabolic benefits, including superior glycemic
control and weight loss compared to GLP-1 receptor agonists
alone in patients with T2D and obesity [5]. As a result, GIP’s
physiological functions are being reexamined, with new evi-
dence highlighting its roles in regulating also inflammatory
processes. Recent preclinical studies have identified both pro-
and anti-inflammatory actions of GIP, depending on discase
context and experimental model [6-8]. GIP receptor (GIPR)
has been found on various immune cells, although its func-
tional significance remains unclear [9]. The potential for GIP to
modulate inflammation is of particular relevance considering
the growing recognition of chronic low-grade inflammation
as a critical contributor to metabolic diseases, such as insulin
resistance, T2D, obesity, atherosclerosis and non-alcoholic ste-
atohepatitis [10]. Moreover, inflammatory pathways are also
implicated in autoimmune forms of diabetes, as type 1 diabetes
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(T1D) and overlapping conditions like double diabetes (or type
1 diabetes with obesity), where immune dysregulation is cou-
pled with metabolic dysfunction [11]. This review discusses
the biological effects of GIP, evaluates the preclinical and clini-
cal evidence linking GIP to both systemic and organ-specific
inflammation, and explores the therapeutic implications of
GIPR-targeting strategies in metabolic and inflammatory dis-
eases. A focus on GIP role in inflammatory pathways within
metabolically relevant tissues during metabolic diseases like
T2D and obesity will be made in line with the growing interest
of GIP targeting in these conditions.

GIP biological effects

GIP is a 42-amino acid peptide hormone secreted by K cells in
the proximal small intestine in response to fat and carbohydrate
ingestion [12]. It acts by binding to a G protein-coupled recep-
tor, which is expressed in multiple tissues accounting for its
pleiotropic effects [2] (Fig. 1). GIP’s primary recognized func-
tion is to enhance B-cells glucose-dependent insulin secretion
by increasing cyclic adenosine monophosphate levels [13].
This leads to the activation of protein kinase A and exchange
protein directly activated by cAMP-2, which together poten-
tiate insulin granule exocytosis [14]. In addition, GIP can
promote B-cell survival by activating anti-apoptotic signaling

cascades and support B-cell growth and proliferation [15, 16].
Importantly, GIPR expression in pancreatic islets appears to
be dynamic and modulated by age, metabolic state, and gly-
cemic control. GIPR downregulation was observed in chronic
hyperglycemia potentially contributing to incretin resistance in
subjects with T2D [17]. In contrast to GLP-1, GIP is known
to stimulate glucagon release from pancreatic o-cells, par-
ticularly under hypoglycemic or euglycemic conditions [18].
Nevertheless, in insulin-deficient states as advanced T2D, the
glucagonotropic action of GIP may predominate, exacerbating
hyperglycemia and reducing its therapeutic efficacy [19]. In
addition to its actions in the endocrine pancreas, GIP plays a
pivotal role in lipid homeostasis. In mouse brown adipose tis-
sue, GIP regulates thermogenesis-related genes and upregulates
lipid, amino acid and glucose catabolic processes [20]. In the
white adipose tissue, GIP promotes lipid uptake and lipogenesis
through upregulation of fatty acid transporters and activation
of lipoprotein lipase [21]. However, GIP lipogenic effects may
become maladaptive under chronic energy excess and contrib-
ute to insulin resistance and weight gain. Indeed, chronic GIP
stimulation has been associated with increased deposition of
fat mass in animal models, whereas GIPR-deficient mice are
resistant to diet-induced obesity [22]. In the cardiovascular
system, GIP exerts complex and multifaceted effects mediated
by the GIPR, which is expressed on endothelial cells, vascular
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smooth muscle cells and cardiomyocytes [23]. In preclinical
models, acute GIP administration improves endothelial func-
tion via stimulation of endothelial nitric oxide synthase and
enhanced bioavailability of nitric oxide, promoting vasodila-
tion and mean arterial blood reduction [24]. In addition, GIP
has been shown to attenuate atherogenesis [25]. Accordingly,
lower GIP levels have been associated with poor cardiovas-
cular outcomes in high-risk patients with acute myocardial
infarction [26]. Among its multiple functions, GIP also con-
tributes to post-prandial bone formation and inhibition of bone
resorption, and it can act as a neuroactive hormone within the
central nervous system [27]. Indeed, GIPR has been detected
in key brain regions involved in energy homeostasis, reward
processing and cognition, like the hypothalamus, hippocampus
and brainstem, with some overlap with GLP-1R expression
[28]. Central administration of GIP or long-acting GIP ana-
logs in diet-induced obesity mice reduce their food intake and
body weight. These effects are abolished in GIPR ™ mice [29].
Moreover, GLP-1R and GIPR co-agonism has shown superior
efficacy in reducing body weight compared with GLP-1 ago-
nism alone, with effects being mediated through GIP receptor
signaling in mice central nervous system [30]. In addition, GIP
has demonstrated neuroprotective effects in preclinical mod-
els of neurodegenerative diseases, which display features of
increased neuroinflammation also observed in T2D and insu-
lin resistant patients [31]. Ultimately, GIP signaling appears to
modulate brainstem circuits involved in emesis. In preclinical
models, co-administration of GIP with GLP-1 receptor agonists
reduced nausea-like behaviors and emesis. These findings may
underlie the improved tolerability of dual GIP/GLP-1 agonists
in humans [32]. Altogether, GIP exerts widespread biological
activity across numerous organ systems, reflecting its multiple
effects beyond glucose homeostasis.

GIP and inflammation

Emerging evidence suggests that GIP may exert direct and
indirect effects on inflammation [33]. These novel findings
reveal an unexpected role for GIP in modulating inflamma-
tory pathways, opening new perspectives on its physiologi-
cal relevance and therapeutic potential.

Animal studies

Recent preclinical studies have revealed both pro- and anti-
inflammatory actions of GIP, depending on tissue, disease
context, and experimental model [34]. In monocytes and
macrophages, GIPR activation decreases the production of
pro-inflammatory cytokines such as TNF-a, IL-1p, IL-8 and
IL-18 [35, 36]. Accordingly, increased bioavailability of GIP
and GLP-1 by the dipeptidyl peptidase 4 inhibitor, sitagliptin,
promotes anti-inflammatory polarization of M¢$ macrophages

towards M2 macrophages and reduces mitochondrial reactive
oxygen species production [37-39]. Moreover, lipopolysac-
charides-stimulated RAW264.7 cells treated with the dipepti-
dyl peptidase 4 inhibitor, vildagliptin, or with the competitive
incretin receptor binding inhibitor, mannose-6-phosphate,
displayed reduction in TLR2 and TLR4 expression as well as
in pro-inflammatory cytokines production [40]. GIP can regu-
late inflammation in obesity via modulation of myelopoiesis
in bone marrow and expression of the pro-inflammatory S100
calcium-binding protein heterodimer S100A8/A9 in bone
marrow and adipose tissue macrophages [8, 9]. Reduced adi-
pose tissue infiltration of inflammatory Ly6C(hi) monocytes,
F4/80(hi)CD11c" macrophages, and IFN-y-producing CD8"
and CD4" T cells was shown after administration of the long-
acting GIP analog [d-Ala(2)]GIP in diet-induced obesity mice.
In addition, reduction in key inflammatory cytokines and che-
mokines, and increase in adiponectin release by adipocytes was
observed [9]. Conversely, GIP stimulation increased monocyte
chemoattractant protein 1 transcripts (MCP-1) in co-cultures
of adipocytes and macrophages, indicating enhanced macro-
phages recruitment in the adipose tissue during obesity [35].
Similarly, intraperitoneal administration of GIP in obese db/db
mice has been associated with increased monocyte chemoat-
tractant protein 1, plasminogen activator inhibitor 1 and IL-6
production by the adipose tissue, at least in part mediated by
upregulation of hypoxia-inducible factor-1a [6]. GIP signal-
ing has been shown to modulate also vascular, brain and gut
inflammation. GIP treatment attenuated atherosclerotic plaque
inflammation in atherosclerosis-prone Apolipoprotein E-null
(ApoE™") mice and stabilized the atherosclerotic plaque in dia-
betic mice [41—43]. On the other hand, infusion of GIP induced
the expression of the proatherogenic cytokine osteopontin in
mouse arteries via local release of endothelin 1 and activation
of cAMP-response element binding protein [44]. GIP adminis-
tration increased proinflammatory-related factors, such as IL-6
and suppressor of cytokine signaling 3, in the hypothalamus of
high-fat diet-fed C57BL/6J male mice [45]. Conversely, GIP
treatment has been demonstrated to alleviate 5-fluorouracil-
induced gut inflammation [7]. The blockade of GIP signaling
or GIPR deficiency reduced the accumulation of T regulatory
cells in the adipose tissue and significantly reduced proinflam-
matory-related factors in the hypothalamus of high-fat diet-fed
C57BL/6J male mice [45, 46]. In contrast, aortic atheroscle-
rosis and mRNA transcripts of pro-inflammatory genes were
increased in ApoE " :GIPR”" mice, and genetic deletion of
GIPR exacerbated the proinflammatory response to 5-fluoro-
uracil in murine small bowel [7, 47]. Finally, GIPR™~ mice
exhibited reduction of hematopoietic stem cells and CD45"
cells in the bone marrow, and of neutrophils, Ly6Chi/Lo mono-
cytes, T cells and natural killer cells both in bone marrow and in
circulation [48]. GIP can therefore be considered a significant
modulator of several key inflammatory pathways occurring in
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both native and adaptive immune cells (i.e., monocytes/mac-
rophages, neutrophils, NKT cells, microglia, myeloid and T
cells) and non-immune cells (i.e., adipocytes, endothelial cells,
neurons and stromal cells), although with some conflicting
results that warrant further investigation (Tables 1 and 2).

Human studies

GIP receptor has been detected on various immune cells, how-
ever the distribution within the human immune system remains
incompletely characterized as well as the functional signifi-
cance [49]. MCP-1 transcripts were increased in co-cultures
of human adipocytes and macrophages following GIP stimula-
tion [35]. GIP treatment of human subcutaneous preadipocyte-
derived adipocytes upregulated mRNA expression of IL-6,

IL-1pB, and the IL-1 receptor antagonist [50]. Moreover, GIP
infusion in slightly obese human subjects has been associated
with increased monocyte chemoattractant protein-1 and — 2,
and IL-6 production by the adipose tissue [35]. Elevated con-
centrations of GIP were found in patients with atherosclerotic
cardiovascular disease [41]. Indeed, infusion of GIP increases
the plasmatic concentrations of osteopontin in healthy indi-
viduals [44]. By contrast, human U937 macrophages treated
with [D-Ala2]GIP(1-42) showed significantly lower foam cell
formation and CD36 gene expression compared to untreated
controls [51]. GIP can also enhance nitric oxide production and
reduce reactive oxygen species generation, advanced glycation
end-products signaling, and vascular cell adhesion molecule
1, intercellular adhesion molecule 1, and plasminogen activa-
tor inhibitor 1 levels in endothelial cells [52]. Indeed, in the
post-prandial phase, incretin hormones promote vasodilation,
supporting tissue perfusion and increased metabolic demands.

Table 1 Pro-inflammatory effects
of GIP

Abbreviations: GIPR: glucose-
dependent insulinotropic
polypeptide receptor, KO:
knockout, HFD: high-fat diet,
GIP: glucose-dependent insu-
linotropic polypeptide, MCP:
monocyte chemoattractant pro-
tein, HIF-la:hypoxia-inducible
factor-la, PAI-1:plasminogen
activator inhibitor 1, IL: inter-
leukin, BAT: brown adipose
tissue, PPAR: peroxisome
proliferator-activated receptor,
Tregs: T regulatory cells, TNF:
tumor necrosis factor, NOS:
nitric oxide synthase, NFAT-
luc: nuclear factor of activated
T-cells luciferase, LDLr: low-
density lipoprotein receptor,
CREB: cAMP-response element
binding protein, ET-1:endothelin
1, OPN: osteopontin, SOCS:
suppressor of cytokine signal-
ing, 5FU:5-fluorouracil, CXCL:
C-X-C motif chemokine ligand,
IFN: interferon, IL-1Ra: IL-1
receptor antagonist
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Cell type/tissue/organ Model Treatment Effects References
Animal studies
Bone marrow myeloid GIPR™ mice GIPR KO in HFD 1 myelopoiesis and [8,9]
cells S100A8/9
Adipose tissue GIPR™ mice GIPR KO in HFD 1 S100A8/9 [8,9]
macrophages
Macrophages RAW264.7 cells  GIP treatment in 1 MCP-1 [35]
co-culture with
3T3L1-adipocytes
White adipocytes 3T3-L1 cells GIP treatment 1 MCP-1, PAI-1, IL-6  [6]
mediated by HIF-1a
White adipocytes Obese db/db GIP treatment 1 MCP-1, PAI-1, IL-6  [6]
mice mediated by HIF-1a
Brown adipocytes GIPR” BAT GIP antagonism | PPAR-y ¢ [46]
mice | Tregs accumulation
in adipose tissue
Arteries NMRI; FVBN  GIP treatment CREB activation and  [44]
NFAT-luc; increase in ET-1 ¢
NFATc3 ™ 1 OPN
Akita*” LDLr 7~
mice
Hypothalamus HFD-fed male  GIP treatment 1 IL-6, SOCS-3 [45]
mice
Small bowel GIPR™" mice GIP KO + 5FU 1 IL-1B, IL-10, IL-6,  [7]
treatment and TNF-a, CXCL-1,
IFN-y, SI00AS8
Human studies
Macrophages Primary human  GIP treatment in co- 1 MCP-1 [35]
macrophages culture with primary
human adipocytes
White adipocytes Human adipose  GIP infusion 1 MCP-1, MCP-2, [35]
tissue IL-6
White adipocytes Human subcuta- GIP treatment 1 IL-6, IL-1B, IL-1Ra  [50]
neous preadi-
pocytes-derived
adipocytes
Systemic effect Obese humans  GIP infusion 1T MCP-1 [35]
Systemic effect Healthy humans GIP treatment CREB activation and  [44]

increase in ET-1 ¢
1 OPN
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Table 2 Anti-inflammatory effects of GIP

Cell type/tissue/organ Model Treatment Effects References
Animal studies
Hematopoietic stem GIPR” mice GIPR KO | SDF-1, TLR, Notch signaling, cell number [48]
cells; myeloid precursors;
CD45" cells in BM
Neutrophils; Ly6Chi/Lo GIPR” mice GIPR KO | cell number in BM and circulation [48]
monocytes; T cells; NKT
cells
Macrophages LPS-stimulated DPP4i 1 cAMP/PKA ¢ suppression of NF-kB and MAPK ¢ [35]
RAW264.7 cells (vildagliptin) | IL-1B, TNF-o, IL-18, IL-8
Macrophages Bone marrow-derived DPP4i (sitagliptin) M1 ¢ M2 polarization and | ROS [37]
M@ from L929 cells
Macrophages LPS-stimulated DPP4i (vilda- | TLR2, TLR4, pro-inflammatory cytokines [40]
RAW264.7 cells gliptin) or M6P
(competitive incre-
tin receptor binding
inhibitor)
Macrophages GIPR™" mice GIP analog | CD36 and ACAT ¢ [42]
[D-Ala2]GIP vs. | foam cells formation
vehicle
Adipose tissue DIO mice GIP analog | infiltration of inflammatory Ly6C(hi) monocytes, [9]
[d-Ala(2)GIP] F4/80(hi)CD11" macrophages, IFN-y-producing
CD8" and CD4" T cells, IFN-y, IL-1B, TNF-a, CCL2,
CCLS, CCL5;
1 in adiponectin release
Arteries ApoE™" mice GIP treatment | inflammation and macrophages activation [41]
Arteries ApoE” mice or db/db GIP treatment | foam cells formation; maintenance of VSMCs [41]
mice contracted phenotype;
1 collagen and thickness of fibrous plaque cap
Arteries ApoE”:GIPR”" mice ApoE and GIPR | mRNA transcripts of inflammatory genes [47]
KO
Hypothalamus HFD-fed male mice GIPR antibody | IL-6, SOCS-3 [45]
GIPR™
Hypothalamus HFD-fed male mice GIP KO | IL-6, SOCS-3 [45]
GIPR™
Microglia BV-2 cells and primary ~ GIP treatment Activation of PI3K/PKA¢ [53]
microglia | apoptosis and ROS;
1 BDNF, GDNF, NGF, GPx-1 and SOD-1
Gut stromal CD146+ cells C57BL/6J mice GIP treatment | 5FU-induced gut inflammation [7]
Systemic effects Immune cells-restricted Immune cells- | systemic inflammation [8,9]
GIPR™":S100A8/9" mice restricted GIPR and
S100A8/9 KO in
HFD
Systemic effect Chow or HFD-fed mice ~ GIP analog | circulating neutrophils and pro-inflammatory [9]
[d-Ala(2)GIP] Ly6C(hi) monocytes
Human studies
Macrophages Human subcutaneous GIP treatment 1 cAMP/PKA ¢ suppression of NF-kB and MAPK ¢  [35, 36]

fat biopsies of slightly
obese patients

| IL-1B, TNF-q, IL-18, IL-8
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Table 2 (continued)

Cell type/tissue/organ Model Treatment Effects References
Macrophages U937 cells GIP analog | Cdk5-CD36 ¢ [51]
[D-Ala2]GIP vs. | foam cells formation
vehicle
Endothelial cells HUVEC; ECV304; GIP treatment 1 AMPK and eNOS ¢ [52]
HPAEC; HAEC cells 1 NO and cAMP ¢

| ROS, AGEs, VCAM-1, ICAM-1, PAI-1
Abbreviations: BM: bone marrow, GIPR: glucose-dependent insulinotropic polypeptide receptor, KO: knockout, SDF-1:stromal cell-derived
factor 1, TLR: toll-like receptor, NKT: natural killer T cells, LPS: lipopolysaccharides, cAMP: cyclic adenosine monophosphate, PKA: protein
kinase A, NF-«B: nuclear factor kappa-light-chain-enhancer of activated B cells, MAPK: mitogen-activated protein kinase, IL: interleukin,
TNEF: tumor necrosis factor, M@:naive macrophage, M1:macrophage type 1, M2:macrophage type 2,, ROS: reactive oxygen species, DPP4i:
dipeptidyl peptidase 4 inhibitors, M6P: mannose-6-phosphate, ACAT: A:cholesterol acyltransferase, DIO: diet-induced obesity, IFN: interferon,
GIP: glucose-dependent insulinotropic polypeptide, ApoE: apolipoprotein E, VSMC: vascular smooth muscle cells, HFD: high-fat diet, SOCS:
suppressor of cytokine signaling, PI3K: phosphoinositide 3-kinase, BDNF: brain-derived neurotrophic factor, GDNF: glial cell line-derived
neurotrophic factor, NGF: nerve growth factor, GPx1:glutathione peroxidase 1, SOD-1:superoxide dismutase 1, SFU:5-fluorouracil, HUVEC:
human umbilical vein endothelial cells, HPAEC: human pulmonary artery endothelial cells, HAEC: human aortic endothelial cells, AMPK:
adenosine monophosphate-activated protein kinase, eNOS: endothelial nitric oxide synthase, NO: nitric oxide, AGEs: advanced glycation
end-products, VCAM-1:vascular cell adhesion molecule 1, ICAM-1:intercellular adhesion molecule 1, PAI-1:plasminogen activator inhibitor 1

This effect is reduced in people with obesity. Particularly,
reduced blood flow following decreased GIP effects during
obesity leads to adipose tissue inflammation, promoting fur-
ther metabolic and cardiovascular disfunction [30]. Ultimately,
GIPR is expressed by primary human microglia and astro-
cytes, potentially playing several homeostatic functions in the
immune cells of the brain [53]. Collectively, GIP orchestrates
complex and multifaceted systemic and local immunomodula-
tory networks in a context-dependent manner (Tables 1 and 2).
These immunomodulatory actions suggest a potential role for
GIP in metabolic inflammation and autoimmune diseases. In
fact, previous studies have reported a link between GIP and
several autoimmune disorders, with GIP peptide showing
positive effects on bone formation and energy homeostasis in
rheumatoid arthritis and reduced expression in systemic lupus
erythematosus and inflammatory bowel disease [34].

GIP targeting

Given the functional duality of GIP peptide in modulating
several inflammatory pathways, targeting GIP either through
agonist or antagonist compounds, can impact both physiologi-
cal and pathological inflammatory responses. Data on GIP
stand-alone agonism and antagonism derive mainly from pre-
clinical studies and showed conflicting metabolic and inflam-
matory outcomes according to the disease model (Tables 1
and 2), which has so far hindered their translation into clini-
cal practice. In contrast, multiple-target therapies, like GIP/
GLP-1 dual agonists, are showing promising results also in
human studies, representing a novel frontier in the treatment
of various diseases [54]. As shown for improvements in glyce-
mic control and body weight reduction, the combination of GIP
targeting with the well-established anti-inflammatory proper-
ties of GLP-1 receptor agonists (GLP-1RAs) may potentiate
the overall immunomodulatory action of these drugs [55-60].

@ Springer

Indeed, solid evidence exists regarding the anti-inflammatory
properties of GLP-1R agonist in autoimmune and inflamma-
tory conditions such as type 1 diabetes, multiple sclerosis,
rheumatoid arthritis, psoriasis, systemic lupus erythemato-
sus, inflammatory bowel disease and cancer [46]. In contrast,
less is known about GIP targeting in such diseases, although
with encouraging, yet still incomplete, data coming from
GIP/GLP-1 receptors agonism. Tirzepatide has been shown
to be safe and effective in autoimmune diabetes [61], and is
currently under investigation following (NCT06857942 and
NCT06864026) or in combination with the anti-IL-17 A ixeki-
zumab (NCT06588296 and NCT06588283), or the anti-I1L-23
mirikizumab (NCT06937099) in obese or overweight patients
with psoriatic arthritis, plaque psoriasis or active Crohn’s dis-
ease, respectively. Evidence from these studies, along with
data potentially arising from the use of tirzepatide in patients
with T2D, obesity and coexisting autoimmune diseases, could
help fill the current knowledge gap regarding GIP targeting in
chronic inflammatory conditions.

Animal studies

The dual GIP/GLP-1 receptor agonist tirzepatide has shown
several anti-inflammatory properties (Table 3). Intraperitoneal
injection of tirzepatide in mice with streptozotocin-induced
diabetic nephropathy showed reduction in advanced glycation
end-products and pro-inflammatory cytokines in both serum
and kidney homogenates [62]. Tirzepatide treatment signifi-
cantly mitigated the infiltration of pro-inflammatory M1 adi-
pose tissue macrophages within the adipose tissue and reduced
the levels of inflammatory cytokines in high-fat diet-fed mice
[63]. Treatment with tirzepatide demonstrated the ability to
reverse intestinal dysbiosis, repair intestinal barrier integrity
and reduce gut inflammation in diet-induced obesity diabetic
mice [64]. Moreover, tirzepatide exhibited a strong beneficial
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Table 3 Anti-inflammatory effects of the GIPR/GLP-1R dual agonist Tirzepatide (TRZ)

Intervention

Target/mechanism of action

Animal studies
Tirzepatide

Tirzepatide vs. carrier

Tirzepatide vs. vehicle

TRZ vs. semaglutide
vs. PBS

Tirzepatide vs. liraglu-
tide vs. vehicle

Tirzepatide vs. saline

Tirzepatide vs. citrate
buffer

Tirzepatide vs. exen-
din-4 vs. PBS

Tirzepatide vs. saline
Human studies

Tirzepatide vs. dula-
glutide vs. placebo

Tirzepatide vs. placebo

Tirzepatide or GIP

Tirzepatide or dulaglu-
tide or semaglutide

Tirzepatide or
[D-Ala2]-GIP with or
without liraglutide

GIPR agonism + GLP-1R agonism
GIPR agonism + GLP-1R agonism

GIPR agonism + GLP-1R agonism

GIPR agonism + GLP-1R ago-

nism (TRZ); GLP-1R agonism
(semaglutide)

GIPR agonism + GLP-1R agonism
(TRZ); GLP-1R agonism (liraglutide)
GIPR agonism + GLP-1R agonism

GIPR agonism + GLP-1R agonism

GIPR agonism + GLP-1R agonism
(TRZ); GLP-1R agonism (exendin-4)
GIPR agonism + GLP-1R agonism

GIPR agonism + GLP-1R ago-
nism (TRZ); GLP-1R agonism
(dulaglutide)

GIPR agonism + GLP-1R agonism

GIPR agonism + GLP-1R agonism
(TRZ); GIPR agonism (GIP)

GIPR agonism + GLP-1R agonism
(TRZ); GLP-1R agonism (dulaglu-
tide; semaglutide)

GIPR agonism + GLP-1R agonism
(TRZ); GIPR agonism [D-Ala2]-GIP;
GLP-1R agonism (liraglutide)

Preclinical/clinical model ~ Anti-inflammatory effects Refer-
ences
STZ-induced diabetic | AGEs, TNF-o0, IL-1p, and IL-6 (serum [62]
nephropathy mice and kidney)
HFD-fed mice | infiltration of M1 ATMs in adipose tis- [63]
sue, | TNF-a, IL-6, MCP-1, IFN-y
DIO diabetic ovariecto- Reverse intestinal dysbiosis; repair [64]
mized mice intestinal barrier integrity;
| macrophage activation and gut
inflammation
Diabetic db/db mice | hepatic fat deposition, MCP1, chemo-  [65]
kines-related genes vs. semaglutide and
placebo; | liver M1/M2 ratio vs. placebo
Angiotensin II-induced | cardiac fibrosis (TRZ and liraglutide); [66]
heart failure mice model | systemic CRP (TRZ)
Doxorubicin-induced car- | ROS, 4-HNE, IL-1p, IL-6, TNF-q; [67]
diac injury mice model 1 SOD and CAT activity
HFD and STZ-induced | amyloid beta (AP) deposition, TNF-a, [68]
diabetic rats IL-6, IL-1 in the hippocampus
Rotenone-induced toxicity | TNF-a, IL-6, oxidative stress and [69]
model in rats (PD model)  alpha-synuclein aggregation vs. PBS
APP/PS1 mice (AD model) | amyloid beta (AB) deposition and ROS [70]
Phase IIb clinical trial in 1 YKL-40, leptin, ICAM-1, GDF-15 [79]
T2D patients vs. baseline; | YKL-40 and leptin vs.
placebo and dulaglutide; | ICAM-1 vs.
placebo and dulaglutide; | hsCRP vs.
baseline and placebo
Phase III clinical trial in | hsCRP [80]
patients with HFpEF and
obesity (SUMMIT trial)
Mature human pancreatic | MCP-1, adiponectin, IL-6 (TRZ); | [81]
adipose tissue organoids IL-1B (TRZ and GIP)
Retrospective cohort of | liver fat, fibrosis and hsCRP levels [82]
T2D patients with MASLD
Human islet microtissues ~ Restore cytokine-induced alpha cell [83]

exposed to proinflamma-
tory cytokines to mimic
TID

impairment

Abbreviations: GIPR: glucose-dependent insulinotropic polypeptide receptor, GLP-1R: glucagon-like peptide-1 receptor, HFpEF: heart failure
with preserved ejection fraction, hsCRP: high-sensitivity C-reactive protein, STZ: streptozotocin, AGEs: advanced glycation end-products,
TNF: tumor necrosis factor, IL: interleukin, HFD: high fat diet, M1:macrophage type 1, M2:macrophage type 2, ATMs: adipose tissue macro-
phages, MCP-1:monocyte chemoattractant protein-1, IFN: interferon, DIO: diet-induced obesity, CRP: C-reactive protein, ROS: reactive oxy-
gen species, 4-HNE:4-Hydroxynonenal, SOD: superoxide dismutase, CAT: catalase, PBS: phosphate-buffered saline, PD: Parkinson’s disease,
AD: Alzheimer’s disease, YKL-40:chitinase-3-like protein 1, ICAM-I:intercellular adhesion molecule 1, GDF-15:growth differentiation factor
15, GIP: glucose-dependent insulinotropic polypeptide, MASLD: metabolic dysfunction-associated steatotic liver disease

effect on hepatic fat deposition and inflammation in the liver of
diabetic db/db mice and high-fat diet-fed rats [65]. Tirzepatide
attenuated also lipopolysaccharides- and doxorubicin-induced
cardiac dysfunction in mice and H9¢2 cells by reducing oxida-
tive stress and cardiac protein levels of TNF-a, IL-6, and IL-13
[66, 67]. Finally, tirzepatide exerted neuroprotection and anti-
inflammatory effects in the hippocampus of diabetic rats, as
well as in key brain areas of Alzheimer and Parkinson’s dis-
ease animal models [68—70]. The GLP-1/GIP dual-receptor

agonists DAS-CH and DA-JCI1 can inhibit the NF-«xB inflam-
matory pathway in mouse and rat models of Parkinson’s dis-
ease more effectively than GLP-1 single-receptor agonist
[71-73]. DA4-JC has shown protective and anti-inflammatory
properties in mouse and rat models of Alzheimer’s disease
[74]. DA3-CH could mitigate pilocarpine-induced neuro-
inflammation, mitochondrial apoptosis and neuronal loss in a
rat model of epileptogenesis [75, 76]. In addition, the novel
dual GLP-1/GIP receptor agonist APS5 effectively reduced
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hyperglycemia, reactive oxygen species production, oxidative
stress and inflammatory markers in a rodent model of diabetic
cardiomyopathy [77]. The latest frontier in GIP targeting is
constituted by triple or quadruple agents acting on GIPR and
GLP-1R, together with other metabolically relevant targets
like glucagon, amylin or calcitonin. The triple GLP-1, GIP and
glucagon receptor agonist, retatrutide (LY3437943), demon-
strated higher reduction of pro-inflammatory cytokines (TNF-
a, caspase-1, and NLRP3) and pro-fibrotic factors (fibronectin,
a-SMA, and collagen I) in kidneys of db/db mice, and better
effects on the intestinal microbiota compared to liraglutide and
tirzepatide [78]. GIP targeting, particularly if combined with
GLP-1 receptor agonism, emerges therefore as a promising
strategy to mitigate inflammation in several chronic inflamma-
tory conditions.

Human studies

Anti-inflammatory properties of tirzepatide have been shown
also in human studies (Table 3). A post-hoc analysis of a phase
2b clinical trial assessing efficacy of tirzepatide versus placebo
or dulagutide in patients with T2D, demonstrated that tirzepa-
tide could decrease YKL-40, leptin and intercellular adhesion
molecule 1 levels versus baseline, placebo and dulaglutide,
and high-sensitivity C-reactive protein versus baseline and
placebo [79]. High-sensitivity C-reactive protein was found to
be decreased by tirzepatide also in a post-hoc analysis of the
SUMMIT trial in patients with heart failure and obesity [80].
Functional mature human pancreatic adipose tissue organoids
exposed to tirzepatide for 24 h exhibit reduction in mono-
cyte chemoattractant protein 1 expression and in adiponectin,
IL-1B and IL-6 release [81]. Tirzepatide demonstrated posi-
tive effects on hepatic fat deposition and liver inflammation
also in T2D patients with metabolic dysfunction-associated
steatotic liver disease [82]. Additionally, tirzepatide has been
shown to restore cytokine-induced alpha cell impairment in a
model of TID [83]. Surprisingly, also the GIPR antagonism
showed anti-inflammatory ability. The long-acting peptide-
antibody conjugate combining GLP-1 receptor agonism with
GIP receptor antagonism, maridebart cafraglutide (MariTide
or AMG133), has demonstrated to decrease high-sensitivity
C-reactive protein levels together with body weight and gly-
cated hemoglobin compared to placebo in patients with obesity
alone or with obesity and T2D [84]. Some hypotheses have
been proposed to explain the paradoxical observation that both
GIPR agonism and antagonism can lead to similar outcomes
(i-e., body weight reduction, improved glycemic control and
reduced inflammation). Chronic GIPR agonism may lead to
receptor desensitization, functionally mimicking antagonism.
Conversely, GIPR antagonism may indirectly enhance GLP-1R
activity, possibly through compensatory mechanisms [85]. At
the same time, the imbalanced agonism towards GIPR exerted
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by tirzepatide together with the biased agonism towards GLP1-
R, which favors cAMP generation over f-arrestin recruitment,
could reduce GLP-1R desensitization and potentiate its activ-
ity [86]. Moreover, evidences demonstrated that GLP1-R and
GIPR can form heteromers, and their signaling can interact,
so that GIP-1R may potentiate GIP signaling and GIPR may
sensitize GLP-1R signaling [87]. Therefore, tirzepatide exerts
a synergistic effect that goes beyond the additive activity of
GIPR and GLP-1R. This could potentially extend to its anti-
inflammatory actions, although dedicated studies are currently
lacking in the literature. Finally, tirzepatide, retatrutide and
the triple agonist HM 15211 (efocipegtrutide) have shown a
strong anti-inflammatory and anti-fibrotic effect in the liver
during metabolic dysfunction associated steatotic liver dis-
ease and metabolic dysfunction-associated steatohepatitis [88].
Altogether, these findings highlight the promising therapeutic
potential of GIP-based multi-target approaches in modulating
systemic inflammation alongside metabolic benefits (Tables
3 and 4). Some limitations should be acknowledged, which
restrict the generalizability of the current evidence and high-
light the need for further research on GIPR targeting. Firstly,
most findings derive from animal or cell culture models, con-
strained by species-specific differences and uncertain trans-
latability to humans. For example, weight loss induced by
tirzepatide seems to result from partially different mechanisms
in mice and humans, with suppression of food intake and
attenuated metabolic adaptation in obese mice vs. decreased
caloric intake without preservation of previous energy expen-
diture levels in humans [89]. Secondly, existing clinical studies
are few, typically involving small sample sizes, short duration,
and restricted populations, with large randomized controlled
trials still lacking. Moreover, assessed outcomes vary widely,
ranging from cytokines to gene expression and clinical param-
eters, with poor standardization across studies. Interpretation is
further complicated by the context-dependent actions of GIP,
which may exert pro- or anti-inflammatory effects depending
on tissue type, metabolic status, and comorbidities, often pro-
ducing contradictory results. Finally, the influence of concomi-
tant hormones, cytokines, and environmental factors limits the
possibility to isolate GIP-specific effects.

Conclusions

Glucose-dependent insulinotropic polypeptide emerges as a
modulator of several inflammatory pathways and a promis-
ing target in metabolic and inflammatory diseases. Despite the
complexity and sometimes conflicting preclinical data regard-
ing selective GIP agonism or antagonism, dual- and multi-
target therapies combining GIP and GLP-1 modulation have
demonstrated significant clinical potential in reducing systemic
inflammation. These findings open new avenues for applying
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Table 4 Anti-inflammatory Intervention Target/mechanism of action  Preclinical/clinical ~ Anti-inflammatory effects Refer-
eﬁ’ectsA of novel GIP-target model ences
therapies Novel GIPR/GLP-1R dual agonists
DAS5-CH vs. GIPR agonism + GLP-1R MPTP-PD mouse | TLR4, Iba-1, GFAP, [71]
NLYO1 agonism (DAS-CH); GLP- model NF-xB, TNF-a, TGF-B1,
IR agonism (NLYO1) IL-6, IL-IB
DA-CHS vs. GIPR agonism + GLP-1R 6-OHDA-unilat- | a-synuclein, TNF- [72]
exendin-4 or agonism (DA-CHS); GLP-  erally lesioned PD a, IL-1P, apoptotic
liraglutide IR agonism (exendin-4) rat model; AS3T tg  processes; protection of
mouse model of PD  mitochondrial functions
DA-CHS vs. GIPR agonism + GLP-1R MPTP-PD mouse | microglia and astrocyte [73]
exendin-4 or agonism (DAS-CH); GLP- model activation;
liraglutide IR agonism (exendin-4 and 1 mitochondrial activ-
liraglutide) ity; normalization of
autophagy vs. liraglutide
DA4-]JC vs. GIPR agonism + GLP-1R APP/PS1 mice (AD | amyloid plaques, TNF- [74]
liraglutide agonism (DA-CHS); GLP-  model) a, IL-1P in the brain
IR agonism (liraglutide)
DA3-CH vs. GIPR agonism + GLP-1R Pilocarpine-induced | astrogliosis and [75]
Abbreviations: GIPR: glucose- saline agonism rat. model of 4 microgliosis, TNF-q,
dependent insulinotropic epileptogenesis IL-lB, | apoptosis in the
polypeptide receptor, GLP-1R: hippocampus
glucagon-like peptide-1 recep- DA3-CH vs. GIPR agonism + GLP-1R MPTP-PD mouse | activated microglia and [76]
tor, hsCRP: high-sensitivity liraglutide agonism (DA3-CH); GLP-  model astrocytes
C-reactive protein, TNF: tumor IR agonism (liraglutide)
necrosis factor, IL: interleukin, APS5 vs. GIP GIPR agonism + GLP-1R Diabetic cardiomy- | ROS, TNF-a, IL-18, [77]
ROS: reactive oxygen species, or GLP-1 vs. agonism (APS5) or GIP or opathy mice model =~ NF-«B vs. single agonism
PD: Parkinson’s disease, AD: saline GLP-1 single agonism and placebo
Alzheimer’s disease GIP: glu- GIPR antagonists/GLP1-R agonists
cose-dependent insulinotropic Maritide GIPR antagonism + GLP-1R  Phase IT clinical | hsCRP [84]
polypeptide, MPTP: 1-methyl- (AMG133) vs.  agonism trials in patients with
4-phenyl-1,2,3,6-tetrahydropyr- placebo obesity alone or with
idine, TLR4: toll-li.ke re(‘ieptlor 4, obesity and T2D
Il()la—l: 1onlzled Ciﬂcllugl};lz;fmig | GIPR/GLP-1R/Glucagon receptor triple agonists
gb?ﬁtl‘;;na"cfcﬁz Sm’tein NFop:  Rettrutide  GIPR antagonism + GLP-IR ~ db/db mice | TNF-q, caspase-1, (78]
nuclear factor kappa—lig:ht— (LY§4379§3) agonism + glucagon agonism NLRP3, fibronectin,
chain-enhancer of activated B vs. l%raglutllde (retat.rutldel); GLI?—IR a—SMA, collagen I
cells, TGF: transforming growth vs. tirzepatide agonism (liraglutide); GIPR (kldneys);. 1 of serum
fac tc;r, 6-OHDA: 6-hydroxydo- ar}tagomsm + GLP-1R ago- b.utyrate': (intestine) vs.
pamine, GLP-1: glucagon-like nism (TRZ) liraglutide and TRZ
peptide-1, NLRP3: NLR family Retatrutride or ~ GIPR antagonism + GLP-1R  Phase II clinical | of liver inflammation [88]

pyrin domain containing 3,
a-SMA: alpha smooth muscle
actin, NASH: non-alcoholic
steatohepatitis

HM15211 (efo-

agonism + glucagon agonism

trials in patients with

these agents in broader clinical contexts, including autoim-
mune, neurodegenerative and chronic inflammatory diseases.
More research is needed to deeply understand GIP properties
in regulating inflammation especially in the clinical setting in
order to unlock its full clinical potential.
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