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ABSTRACT

Chronic kidney disease (CKD) is a common comorbidity of both type 1 diabetes (T1D) and type 2 diabetes (T2D) and is associated
with increased mortality, end-stage kidney disease and cardiovascular disease risk. Despite standard-of-care treatment with renin-
angiotensin system inhibitors added to blood pressure and glycaemic control, people with CKD and T1D have a residual risk of CKD
progression. Advances in therapeutic management have been limited over the past 3 decades, especially compared with CKD in T2D,
for which new treatment options have emerged in the last 5 years. In this review article we discuss the similarities and differences
between T1D and T2D populations with CKD, including epidemiology, pathophysiology and clinical findings. Additionally, we explore
the use of albuminuria as a potential bridging biomarker to extrapolate clinical evidence from one population to the other. This
concept could offer a promising strategy to narrow the gap in treatment availability between these populations and address the
unmet therapeutic need in people with CKD and T1D. The FINE-ONE trial is investigating the non-steroidal mineralocorticoid receptor
antagonist finerenone in a population with CKD and T1D using the change in urine albumin:creatinine ratio from baseline over
6 months as its primary endpoint and bridging biomarker. Similarities between the populations from FINE-ONE trial and FIDELITY (a
pooled dataset of individuals with CKD and T2D included in two large phase 3 clinical trials of finerenone) may inform the translation
of clinical evidence on finerenone from people with CKD and T2D to those with CKD and T1D.
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INTRODUCTION of kidney failure, cardiovascular (CV) disease and mortality, af-
firming the high disease burden driven by CKD [4, 5]. While new
therapies have become available for the management of CKD pro-
gression in people with T2D, similar innovations for people with
T1D lag behind. Landmark clinical trials conducted >30 years ago
demonstrated that improved glycaemic control and treatment
with the angiotensin-converting enzyme inhibitor (ACEi) capto-

The International Diabetes Federation estimates that 588.7 mil-
lion people worldwide had diabetes in 2024 [1]. Of these, 9.2 mil-
lion had type 1 diabetes (T1D). Chronic kidney disease (CKD) is
a common complication of diabetes, developing in ~30% of peo-
ple with T1D and 40% of people with type 2 diabetes (T2D) [2, 3].
Both CKD and T1D or T2D are associated with an increased risk
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pril reduced both estimated glomerular filtration rate (eGFR) de-
cline and the risk of progression to kidney failure in people with
T1D and CKD [6, 7]. Since then, no new drugs to slow the pro-
gression of CKD have become available and people with T1D re-
main at high residual risk. A registry study of 591 people with T1D
who had CKD onset between January 2000 and December 2020 re-
ported that the cohort continued to lose kidney function and the
risks of kidney and CV events remained high despite 73% receiving
renin-angiotensin system (RAS) inhibitor therapy [8]. Thus there
is an unmet need for novel therapies.

Clinical trials using validated surrogate outcomes can accel-
erate new therapy development, given that these are smaller
and have shorter follow-ups than clinical outcome trials. This is
particularly relevant for T1D, where it is challenging to recruit
large cohorts of participants to record sufficient clinical kidney
outcomes that would enable robust assessment of drug efficacy.
In these settings, a surrogate outcome can serve as a bridging
biomarker to translate evidence from one population to another.
In the case of CKD in T1D and T2D, albuminuria is common in
both conditions and is a major driver of CKD progression [9]. As
such, changes in albuminuria, typically measured by the urine al-
bumin:creatinine ratio (UACR), could be used to extrapolate clin-
ical evidence from one patient population to the other. Here we
describe the use of UACR as a bridging biomarker to translate ev-
idence of the efficacy and safety of the non-steroidal mineralo-
corticoid receptor antagonist (nsMRA) finerenone from popula-
tions with CKD in T2D to those with CKD in T1D. We compare
the FINE-ONE trial (NCT05901831) population (patients with CKD
and T1D) with a CKD and T2D population {FIDELITY; a prespeci-
fied pooled analysis of two large phase 3 clinical trials [FIDELIO-
DKD (NCT02540993) and [FIGARO-DKD (NCT02545049)]} receiv-
ing optimized doses of ACEI or angiotensin receptor blocker (ARB)
therapy in which finerenone has demonstrated significant re-
ductions in CKD progression and CV events with a manageable
safety profile.

CKD IN PEOPLE WITH T1D
Prevalence and risk factors

Several new studies have recently been published, providing de-
tails on the prevalence of CKD in people with T1D. Among these,
a study of >23000 individuals with T1D in a US clinical registry
reported that 27.1% had CKD [3]. Higher risks of developing CKD
were noted among females, older adults, people in certain ethnic
and racial groups (such as African Americans, Asians and Pacific
Islanders) and people with underlying CV disease [3]. Additionally,
a study based on data from the Diabetes Control and Complica-
tions Trial/Epidemiology of Diabetes Interventions and Complica-
tions cohort showed that in people with T1D, higher long-term
cumulative glycaemic exposure [as measured by updated mean
glycated haemoglobin (HbA1lc)] and male sex were independently
associated with incident macroalbuminuria [10]. Furthermore, an
analysis from the US National Health and Nutrition Examination
Survey concluded that CKD is common in people with T1D, with
a conservative estimated prevalence of 21.5% (weighted to reflect
the population distribution in the USA) [11].

CKD and diabetes independently increase the risk of CV dis-
ease outcomes [12]. Although this is well recognized in T2D, reg-
istry studies showed that CV disease rates are similarly high in
adults with T1D. For example, a Scandinavian observational study
including ~540000 individuals found similarly high rates of CV

disease in T1D and T2D across different age ranges [13]. Interest-
ingly, a French study of ~500 000 hospitalized individuals reported
a lower crude prevalent burden of CV diseases in those with T1D
compared with T2D; however, rates for both T1D and T2D in-
creased with advancing age, and at middle to older ages the risk of
incident CV diseases was higher in individuals with T1D [14]. This
was also reported in a prospective cohort study of ~19 000 middle-
aged and older adults with diabetes in the UK, where those with
T1D had a higher incidence of cardio-kidney outcomes than those
with T2D [15].

Pathophysiology: differences and similarities
versus T2D

Hyperglycaemia and hypertension are key risk factors for CKD de-
velopment and progression in both T1D and T2D [2]. Together,
these factors contribute to driving inflammation and fibrosis,
leading to cellular hypertrophy and proliferation, extracellular
matrix expansion, glomerulosclerosis, tubulo-interstitial damage
and albuminuria [16]. MR overactivation is a key part of this pro-
cess, because it upregulates expression of genes associated with
inflammation and fibrosis in the kidney and heart [17, 18]. An
overview of these processes at the cellular and tissue levels is
shown in Fig. 1.

While there are clinical similarities between CKD in T1D and
T2D, the morphology of the lesions that impact kidney function
may differ. In T1D, the glomeruli are predominantly affected, re-
sulting in thickening of the glomerular basement membrane and
mesangial expansion [19]. Podocyte loss and tubulo-interstitial
damage are also frequently observed, along with changes in the
arterioles, which are associated with glomerulosclerosis [19]. The
degree of structural lesions and kidney tissue abnormalities vary
within and between patients. In patients with T2D, the same tissue
structure alterations can be involved in the disease pathophys-
iology, but with a higher level of complexity. Biopsy studies have
demonstrated a greater heterogeneity in the underlying kidney
pathophysiology in people with T2D compared with the typical
patterns of CKD often associated with T1D [19]. Indeed, when
comparing T1D and T2D populations with similar CKD character-
istics, disease duration is often much longer in T1D than T2D. This
suggests either a different rate of kidney damage or involvement
of other factors such as inflammation associated with T2D or
higher blood pressure [20]. Nevertheless, irrespective of the pre-
cise pathophysiology of kidney disease in T1D and T2D, albumin-
uria remains a hallmark of the disease and a strong risk marker
of adverse kidney and CV outcomes in both T1D and T2D [9].

Albuminuria: a common manifestation of CKD in
T1D and T2D

Albuminuria is a common manifestation of kidney disease in
people with diabetes. Current guidelines recommend screening
and monitoring of UACR to identify CKD early, and treatments
that reduce UACR should be initiated to slow CKD progression
[5]. The cause of albuminuria in CKD is probably multifactorial
and appears to be the same in T1D and T2D. The glycocalyx,
an important part of the vascular permeability barrier, is dam-
aged by hyperglycaemia, leading to albumin leakage across
the glomerular capillaries and subsequently into the urine
[21]. Tubulo-interstitial damage (resulting from fibrotic and
inflammatory processes; Fig. 1) reduces the capacity for albumin
reabsorption in the proximal tubule [22]. Additionally, exposure to
albumin is toxic to proximal tubular epithelial cells, exacerbating
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Figure 1: Role of MRA activation in the pathophysiology of CKD in T1D and T2D. ECM: extracellular matrix. Figure based on Heerspink HJL et al.
Diabetes Res Clin Pract 2023;204:110908. https://creativecommons.org/licenses/by/4.0/. [27].

tubulo-interstitial fibrosis [23], further reducing kidney function.
Thus albuminuria predicts CKD progression and does so in a
similar fashion in both T1D and T2D.

TREATMENT OF CKD IN T1D AND T2D

There has been significant progress in the management of CKD
in people with T2D, with three new drug classes shown to re-
duce cardio-kidney risk. These include nsMRAs, sodium-glucose
co-transporter-2 inhibitors (SGLT-2is) and glucagon-like peptide-
1 receptor agonists (GLP-1RAs). Over the past 5 years the clinical
benefits of these agents have been demonstrated on top of exist-
ing treatments, including RAS inhibitors [4, 5, 24].

The nsMRA finerenone significantly reduced adverse kidney
and CV outcomes compared with placebo in FIDELITY [25]. The
relative risk reduction of the composite kidney outcome (time
to first onset of kidney failure, sustained >57% eGFR decline
from baseline over >4 weeks or kidney-related death) was 24%;
components of kidney failure including end-stage kidney disease
(ESKD; chronic dialysis for >90 days) or kidney transplantation
and sustained eGFR decline to <15 ml/min/1.73 m? were signif-
icantly lower with finerenone than placebo. The composite CV
outcome (time to CV death, non-fatal myocardial infarction, non-
fatal stroke or hospitalization for heart failure) was reduced by
14% [25]. Furthermore, finerenone lowered UACR from baseline
to 4 months by 32% versus placebo, an improvement that per-
sisted throughout the trials [25]. Subsequent analyses revealed
that the reduction in albuminuria explained 84-87% of the bene-
fit of finerenone in reducing the risk of the kidney composite out-

comes and 37% of its effect on the CV composite outcome, sug-
gesting early reduction in albuminuria as an important indicator
of the long-term benefit of finerenone [26, 27].

Regarding SGLT-2is and GLP-1RAs, similar kidney and CV bene-
fits in people with CKD and T2D were also reported in clinical tri-
als. In the CREDENCE trial (NCT02065791), canagliflozin reduced
the risk of the primary composite kidney endpoint (ESKD, sus-
tained doubling of serum creatinine from baseline for >30 days
or death from renal or CV disease) by 30% versus placebo in
participants with CKD and T2D [28]. In the DAPA-CKD trial
(NCT03036150), where 68% of participants had CKD and T2D, da-
pagliflozin reduced the composite cardio-kidney endpoint (sus-
tained >50% eGFR decline, ESKD or kidney/CV death) by 36%
in this subpopulation [29]. In EMPA-KIDNEY trial (NCT03594110),
there was a 28% reduction in the risk of kidney disease progres-
sion or CV death with empagliflozin in people with CKD, 44% of
whom had T2D [30]. More recently, the FLOW trial (NCT03819153)
found that the GLP-1RA semaglutide reduced the primary com-
posite outcome (onset of kidney failure, sustained >50% reduction
in eGFR from baseline or death from kidney or CV causes) by 24%
in people with T2D and CKD [24].

Despite recent findings in the CKD population, the lack of new
therapies for people with T1D contrasts sharply with innovations
in clinical management for people with T2D. No new drugs to slow
CKD progression in T1D have become available since the land-
mark Collaborative Study Group Captopril Trial, which demon-
strated that improved glycaemic control and treatment with
captopril reduced both eGFR decline and the risk of progression to
kidney failure [6]. Since then, few trials have focused on therapeu-
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tic advancements for this population, with the most recent trial,
Preventing Early Renal Function Loss, demonstrating no benefit
for allopurinol treatment on kidney outcomes in people with CKD
and T1D [31]. Neither SGLT-2is nor GLP-1RAs are currently rec-
ommended for use in people with T1D for glucose lowering, and
neither class has been thoroughly tested in the T1D population
for CV or kidney outcomes. Although SGLT-2is are indicated in the
USA for treatment of CKD irrespective of diabetes status, they are
not currently recommended for glucose lowering in T1D due to
safety concerns [32, 33]. As a result, RAS blockade and glycaemic
control with insulin (along with risk factor optimization) remain
the only recommended medical strategies for reducing the risk
of adverse kidney events. However, additional risk remains, par-
ticularly among individuals with persistently high albuminuria
[8, 34], highlighting the need for new trials and therapies to
reduce the risk of kidney disease progression in people with
CKD and T1D.

ROLE OF BRIDGING BIOMARKERS
Translating evidence from clinical trials

The use of bridging biomarkers can extend the availability of ther-
apies that have been evaluated and approved in one population
to another in cases where it may be challenging to conduct large
clinical trials [35]. It also addresses the ethical problem of con-
ducting unnecessary clinical trials and delaying therapy to those
who would benefit. Biomarkers can be accepted for use as drug
development tools to support regulatory approval if certain condi-
tions are met [36]. However, a bridging biomarker can only be used
to extrapolate evidence between populations if it is a valid surro-
gate endpoint (i.e. supported by strong mechanistic evidence and
correlated with patient outcomes). Furthermore, patient charac-
teristics and expected responses to the drug must be sufficiently
similar in both populations [35]. Extrapolation of therapeutic
benefit from one population to another also relies on established
safety of the approved treatment and a reasonable expectation
that the safety profile will be similar in the target population.
Ensuring comparability between populations in studies using
bridging biomarkers will enable high confidence that clinical
benefit can be reliably translated and justify the extrapolation of
evidence.

Albuminuria as a bridging biomarker in CKD

In CKD, bridging biomarkers may be useful for translating the
wealth of evidence from the T2D population to the T1D popula-
tion because, once established, CKD progression is strikingly sim-
ilar in both diabetes types. Analyses from observational studies
and clinical trials have shown that albuminuria is a valid surro-
gate endpoint for future clinical trials, suggesting that it may also
be a useful bridging biomarker. In a global participant-level meta-
analysis of >27 million individuals in 114 cohorts, severe albu-
minuria was associated with kidney failure, kidney replacement
therapy, CV mortality, heart failure and atrial fibrillation, and the
association was evident in people with diabetes [37]. Other studies
have shown that the risk relationship between albuminuria and
cardio-kidney outcomes is similarin T1D and T2D. In both popula-
tions, those with macroalbuminuria had a comparable rate of loss
of eGFR [38]. In people with T1D, the Diabetes Control and Compli-
cations Trial/Epidemiology of Diabetes Interventions and Compli-
cations study reported worsening cardio-kidney outcomes as al-
buminuria advanced [39]. Changes in albuminuria over time have

also been associated with the risk of subsequent cardio-kidney
outcomes. In a study of almost 700 000 individuals with albumin-
uria data (80% of whom had diabetes), increases in albuminuria
over 1, 2 or 3 years were linearly associated with an increased risk
of kidney failure and CV outcomes [40]. The association was sim-
ilar regardless of individuals’ diabetes status. Additionally, an ob-
servational analysis of >10 000 individuals with diabetes reported
elevated risks of CV events, CV mortality and kidney events as
UACR increased [41].

Importantly, therapeutic lowering of albuminuria is strongly
associated with improved kidney outcomes in people with dia-
betes and CKD [42]. Among people with T1D in the Collabora-
tive Study Group trial of captopril, treatment with captopril re-
duced albuminuria within 3 months of initiation and reductions
were sustained throughout the trial, with significant reductions
reported over 4 years [6]. In the same trial, captopril reduced the
risk of kidney outcomes, including death, dialysis or transplan-
tation, by 50%. Trials investigating RAS blockade in people with
T2D and CKD reported similar results. The RENAAL (Reduction of
Endpoints in NIDDM with the Angiotensin II Antagonist Losartan)
trial reported reductions in both proteinuria and the rate of kidney
function decline with losartan compared with placebo [43], and
the Irbesartan Diabetic Nephropathy Trial reported significantly
reduced proteinuria compared with placebo as well as a reduced
risk of kidney outcomes with irbesartan versus placebo [44]. In
a meta-analysis of 41 randomized controlled clinical trials, early
treatment effects on albuminuria were associated with lower risks
of established kidney outcomes. The same meta-analysis also
showed that therapies that reduced albuminuria by 20-30% dur-
ing the first 6 months of treatment were associated with a high
likelihood of reducing the risk of clinical kidney outcomes during
long-term treatment [45].

However, safety is an important consideration when evaluat-
ing albuminuria as a bridging biomarker in CKD, because some
therapies that improve albuminuria may have side effects in the
new population that did not occur in the original population. For
example, a meta-analysis of SGLT-2i use in individuals with T1D
reported UACR reductions of 23% [46], which is similar to those re-
ported in people with T2D, but increased risks of diabetic ketoaci-
dosis, including euglycaemic ketoacidosis, have been reported in
SGLT-2i trials in the T1D population [47]. For finerenone, current
evidence shows that UACR reduction explains a substantial part
of its benefit on kidney outcomes in T2D [26], without impact-
ing glucose levels or inducing side effects that would pose greater
risks to T1D versus T2D populations.

THE FINE-ONE TRIAL: FINERENONE FOR
CKD AND T1D USING ALBUMINURIA AS A
BRIDGING BIOMARKER

The FINE-ONE trial was designed to use albuminuria as a clini-
cal trial endpoint and bridging biomarker to translate evidence
from T2D to T1D. The aim is to assess the change in UACR
from baseline over 6 months along with safety [27]. Adults
(>18 years of age) with CKD (UACR 200-<5000 mg/g and eGFR
25-<90 ml/min/1.73 m?), T1D (HbAlc <10%) and serum potas-
sium <4.8 mmol/l who were receiving stable ACEi or ARB ther-
apy could participate. Eligible adults (N = 242) were randomized
1:1 to finerenone 10 or 20 mg once daily (participants with eGFR
<60 ml/min/1.73 m? were initiated on the lower dose with the op-
portunity to up-titrate after 4 weeks) or placebo (Fig. 2) [27].
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A. Study design for FINE-ONE
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Figure 2: FINE-ONE and FIDELITY study designs and baseline KDIGO risk categories. CKD was defined as UACR 200-<5000 mg/g and eGFR 25-<90
ml/min/1.73 m? in FINE-ONE and UACR 30-<300 mg/g and eGFR 25—<90 ml/min/1.73 m? or UACR 300-<5000 mg/g and eGFR >25 ml/min/1.73 m? in
FIDELITY. Six participants in FIDELITY had missing values (one missing eGFR only, three missing UACR only and two missing both eGFR and UACR.
*Starting dose 10 mg/day for participants with eGFR >25-<60 ml/min/1.73 m? and 20 mg/day for participants with eGFR >60 ml/min/1.73 m?. *Other
prespecified outcomes included time to first occurrence of kidney failure, sustained >40% decrease in eGFR from baseline over >4 weeks, or
kidney-related death; time to all-cause mortality; and time to all-cause hospitalization. HHF: hospitalization for heart failure; KDIGO: Kidney Disease:

Improving Global Outcomes; MI: myocardial infarction; R: randomization.

Comparing FINE-ONE and FIDELITY populations
at baseline

Table 1 summarizes study details of the FINE-ONE trial and FI-
DELITY pooled analysis. Recruitment for FINE-ONE was com-
pleted in February 2025. Participant baseline characteristics of the
FINE-ONE and FIDELITY cohorts are presented in Table 2. These
data show that participants in FINE-ONE and FIDELITY had com-
parable kidney function at baseline, as demonstrated by similar
mean eGFR (58.8 and 57.6 ml/min/1.73 m?, respectively) and me-
dian UACR (549.0 and 515.1 mg/g, respectively). The percentage of
participants with moderate, high and very high cardio-kidney risk,
as predicted by the Kidney Disease: Improving Global Outcomes
(KDIGO) heat map [4], were similar, with most participants having
high or very high risk at baseline (88.0% of FINE-ONE participants
and 89.3% of FIDELITY participants) (Fig. 2). More than a quarter
of participants in both the FINE-ONE and FIDELITY populations
had UACR levels >1000 mg/g at baseline, indicating that a sub-
stantial proportion of both populations (CKD with T1D and T2D)
were at high risk of CKD progression.

One key difference between the FINE-ONE and FIDELITY pop-
ulations was the duration of diabetes (32.0 versus 15.4 years, re-
spectively). Nevertheless, baseline HbAlc values were similar in

the two populations (7.6% in FINE-ONE versus 7.7% in FIDELITY)
and similar proportions had an HbAlc >7.5% (47.6% versus 48.3%,
respectively), indicating similar levels of diabetes severity and/or
control. One possible cause for the difference in disease duration
is that T2D progresses gradually over time, often going undiag-
nosed in the early stages of the disease [1]. Additionally, T1D1is typ-
ically diagnosed at a young age, often in childhood, when the risk
of kidney complications is lower. Over time, however, albumin-
uria becomes a more common finding among people with T1D. A
study of registry data from almost 80 000 adults with T1D reported
that approximately one-tenth of people with a diabetes duration
<20years had albuminuria, whereas approximately one-third had
developed albuminuria after 40 years [48]. The prevalence of CKD
in people with T1D thus remains high [3], emphasizing the need
for therapies that protect the kidneys in addition to optimal gly-
caemic control and RAS inhibition.

A lower proportion of FINE-ONE participants had a history
of CV disease at baseline compared with FIDELITY participants
(24.4% versus 45.6%, respectively). This is likely due to the
lower mean age in the FINE-ONE trial compared with FIDELITY.
The lower prevalence of CV disease may have contributed to a
lower use of CV disease-related therapies such as beta blockers,
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Table 1: Study details of FINE-ONE and FIDELITY.

Characteristics

FINE-ONE (N = 242)

FIDELITY (N = 12 990)

Study design

Inclusion criteria

Exclusion criteria

Phase 3, randomized, double-blind,
placebo-controlled, multicentre clinical trial

* Age >18 years (or legal age of consent according to
local legislation)

e Type 1 diabetes (continuously treated with insulin,
started <1 year from diagnosis)

* HbAlc at screening <10.0%

¢ UACR >200-<5000 mg/g

e eGFR >25-<90 ml/min/1.73 m?

* On a stable dose of ACEi or ARB

e Serum potassium level <4.8 mmol/l

e Type 2 diabetes

e Other known causes of CKD than type 1 diabetes

e Kidney transplantation

* Mean BP >160/100 mmHg or mean systolic BP
<90 mmHg at screening

¢ Hospitalization due to a CV event <4 weeks prior to
screening

e Symptomatic heart failure with reduced ejection
fraction with class 1A indications for MRAs

e Current or previous (<8 weeks prior to screening)

Pooled analysis of two phase 3, randomized,
double-blind, placebo-controlled, multicentre
clinical trials

* Age >18 years

* Type 2 diabetes

* UACR 30-<300 mg/g and eGFR
25-<90 ml/min/1.73 m?, or UACR 300-<5000 mg/g
and eGFR >25 ml/min/1.73 m?

e Maximum tolerated dose of ACEi or ARB

¢ Serum potassium level <4.8 mmol/l

¢ Non-diabetic kidney disease

e Uncontrolled hypertension

e HbAlc >12%

e Mean BP >160/>100 mmHg, or mean SBP
<90 mmHg at screening

e Chronic symptomatic heart failure with reduced
ejection fraction

* Recent CV event

e Dialysis for acute kidney failure

treatment with a SGLT-2/1i or GLP-1RA

BP: blood pressure; SGLT-2/1i: sodium-glucose co-transporter-2/-1 inhibitor.

diuretics and platelet inhibitors in the FINE-ONE trial. However,
statin use was similarly high in the two populations (73.6% versus
72.3%, respectively), which may reflect broad recommendations
for their use according to international treatment guidelines. The
American Diabetes Association and European Association for the
Study of Diabetes recommend statin use for primary prevention
of CV disease in all people with diabetes >40 years of age as well
as for secondary prevention of CV events in people with diabetes
and established CV disease [49, 50].

MRAs are associated with an increased risk of hyperkalaemia
versus placebo [51]. In the Benefits of Aldosterone Receptor Antag-
onism in Chronic Kidney Disease (BARACK-D) trial, for example,
8% of participants (individuals with stage 3b CKD) treated with
the MRA spironolactone (n = 677) withdrew from treatment within
6 months for hyperkalaemia-related reasons [52]. Compared with
steroidal MRAs, which are not recommended for use in CKD [4],
finerenone (an nsMRA) has a higher selectivity for the MR, shorter
half-life and more balanced tissue distribution in the kidneys
and heart [51]. While hyperkalaemia risk remains greater with
finerenone than with placebo, itis clinically manageable. In the FI-
DELITY analysis, potassium levels <4.8 mmol/l were required for
inclusion in each of the trials and were monitored throughout the
trials—the incidence of hyperkalaemia-related discontinuations
or hospitalizations was low [25]. Safety assessment in the FINE-
ONE trial includes hyperkalaemia monitoring, allowing compari-
son of early changes in potassium. At baseline, potassium levels
were clinically similar between the FINE-ONE and FIDELITY co-
horts (4.6 versus 4.4 mmol/l, respectively). Given the similarities in
kidney function and baseline serum potassium levels between the
FINE-ONE and FIDELITY cohorts, the overall adverse event rates
by patient-years are anticipated to be comparable between the
two populations. Consequently, the likelihood of new or increased
adverse effects in participants with CKD and T1D is expected to
be low.

The follow-up duration in the FINE-ONE trial is 6 months,
meaning that the trial cannot assess the long-term effect of
finerenone on UACR and its impact on CV and kidney outcomes.
However, as described earlier, a post hoc FIDELITY analysis
showed that >80% of the kidney benefit of finerenone is ex-
plained by a UACR reduction within 4 months of treatment
initiation [26]. Similar mediation results were observed in a more
restricted analysis including only participants with the same
inclusion criteria as the FINE-ONE trial (UACR >200-<5000 mg/g
and eGFR 25-<90 ml/min/1.73 m?) [27]. Notably, the American Di-
abetes Association guideline recommends reducing albuminuria
by >30% in people with CKD and albuminuria levels >300 mg/g
to slow CKD progression [5]. This recommendation is relevant for
the T1D population as recruited in the FINE-ONE trial, in which
74% of participants have a UACR >300 mg/g at baseline. This sug-
gests that an early UACR reduction after 6 months of finerenone
treatment in FINE-ONE will likely translate into longer-term
clinical benefits on kidney outcomes. Additionally, albuminuria
is associated with increased CV risk, and UACR reductions have
been associated with lower risks of CV events [53]. Assuming
finerenone has similar albuminuria-lowering effects in T1D and
T2D, the similarities evident in the FINE-ONE and FIDELITY popu-
lations at baseline support efficacy comparisons between the two
populations in accordance with the bridging biomarker concept.

CONCLUSIONS AND FUTURE DIRECTIONS

While the pathophysiological mechanisms associated with CKD
in T1D and T2D are similar, there is a stark difference between
the availability of therapeutic options for these two populations.
Given the comparable CKD pathophysiology and cardio-kidney
risks, improving kidney and CV outcomes in people with CKD and
T1D may require a more intensive, multifactorial therapeutic ap-
proach, similar to that recommended for T2D. This should involve
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Table 2: Baseline characteristics and measurements (clinical and biochemical) in FINE-ONE and FIDELITY.

Characteristics

FINE-ONE (N = 242) FIDELITY (N = 12990)

Age (years), mean + SD
Male, n (%)
Race, n (%)
White
Black/African American
Asian
Other?
Region, n (%)
Europe
North America
Asia
Latin America
Other®
Weight (kg), mean + SD
BMI (kg/m?), mean + SD
Medical history
Duration of diabetes (years), mean =+ SD
History of CVDS, n (%)
History of hypertension, n (%)
Medication use?, n (%)
ACEiL
ARBs
Diuretics
Beta blockers
Statins
Platelet aggregation inhibitors®
Clinical measurements
Systolic blood pressure (mmHg), mean + SD
Diastolic blood pressure (mmHg), mean =+ SD
Biochemical measurements
HbA1c (%), mean + SDf
HbAc category (%), n (%)
<7.5
>7.5
UACR (mg/g), median (IQR)
UACR category (mg/g) n (%)&
<300
>300-1000
>1000
eGFR (ml/min/1.73 m?), mean =+ SD
eGFR category (ml/min/1.73 m?), n (%)"
<25
25-<45
45-<60
60-<90
>90
Serum potassium (mmol/l), mean + SD

51.6 4137 64.8 £ 9.5
158 (65.3) 9058 (69.7)
173 (71.5) 8869 (68.3)

15 (6.2) 520 (4.0)
48 (19.8) 2860 (22.0)
6 (2.5) 741 (5.7)
120 (49.6) 5862 (45.1)
83 (34.3) 2049 (15.8)
39 (16.1) 3170 (24.4)

_ 1434 (11.0)
- 475 (3.7)

80.7 +20.8 8814201
27.6 £ 6.0 313460

32.0 + 14.2 154 £87
59 (24.4) 5928 (45.6)
207 (85.5) 12531 (96.5)
112 (46.3) 5076 (39.1)
128 (52.9) 7904 (60.8)
87 (36.0) 6701 (51.6)
66 (27.3) 6499 (50.0)
178 (73.6) 9387 (72.3)
76 (31.4) 7296 (56.2)

1352 £ 16.7 136.8 & 14.2

77.5 +10.8 764496
76411 77+ 14
124 (51.2) 6696 (51.5)
116 (47.9) 6272 (48.3)

549.0 (298.8-1190.7)

515.1 (198.1-1148.3)

63 (26.0) 4311 (33.2)
113 (46.7) 4871 (37.5)
66 (27.3) 3803 (29.3)
58.8 4+ 19.1 5764217
5(2.1) 162 (1.2)
58 (24.0) 4224 (32.5)
62 (25.6) 3426 (26.4)
107 (44.2) 3857 (29.7)
10 (4.1) 1318 (10.1)
46+04 44404

@American Indian or Alaska native, Hawaiian or other Pacific Islander or not reported or multiple.

bAustralia, New Zealand or South Africa.

CHistory of CVD was determined by the presence of one of the following in the medical history: myocardial infarction, coronary artery stenosis, cerebrovascular

accident, transient ischaemic attack, peripheral arterial occlusive disease or cardiac failure.

dUse of SGLT-2is and GLP-1RAs was not permitted in the FINE-ONE trial.
¢Excluding heparin.

fValues missing for 2 FINE-ONE and 22 FIDELITY participants.

8Values missing for five FIDELITY participants.

"Values missing for three FIDELITY participants.

BMI: body mass index; CVD: cardiovascular disease; IQR: interquartile range; SD: standard deviation.

both further research to reveal new therapeutic targets in T1D and
repurposing of current drugs. Trials like FINE-ONE provide an op-
portunity to address CKD in the T1D population by allowing clin-
ical findings from people with T2D to be translated to T1D.
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