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ABSTRACT 

Chronic kidney disease (CKD) is a common comorbidity of both type 1 diabetes (T1D) and type 2 diabetes (T2D) and is associated 
with increased mortality, end-stage kidney disease and cardiovascular disease risk. Despite standard-of-care treatment with renin–
angiotensin system inhibitors added to blood pressure and glycaemic control, people with CKD and T1D have a residual risk of CKD 

progression. Advances in therapeutic management have been limited over the past 3 decades, especially compared with CKD in T2D, 
for which new treatment options have emerged in the last 5 years. In this review article we discuss the similarities and differences 
between T1D and T2D populations with CKD, including epidemiology, pathophysiology and clinical findings. Additionally, we explore 
the use of albuminuria as a potential bridging biomarker to extrapolate clinical evidence from one population to the other. This 
concept could offer a promising strategy to narrow the gap in treatment availability between these populations and address the 
unmet therapeutic need in people with CKD and T1D. The FINE-ONE trial is investigating the non-steroidal mineralocorticoid receptor 
antagonist finerenone in a population with CKD and T1D using the change in urine albumin:creatinine ratio from baseline over 
6 months as its primary endpoint and bridging biomarker. Similarities between the populations from FINE-ONE trial and FIDELITY (a 
pooled dataset of individuals with CKD and T2D included in two large phase 3 clinical trials of finerenone) may inform the translation 

of clinical evidence on finerenone from people with CKD and T2D to those with CKD and T1D. 
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of kidney failure, cardiovascular (CV) disease and mortality, af- 
firming the high disease burden driven by CKD [4 , 5 ]. While new 

therapies have become available for the management of CKD pro- 
gression in people with T2D, similar innovations for people with 
T1D lag behind. Landmark clinical trials conducted > 30 years ago 
demonstrated that improved glycaemic control and treatment 
with the angiotensin-converting enzyme inhibitor (ACEi) capto- 

D
ow

nloaded from
 https://academ

ic.oup.com
/ndt/advance-article/doi/10.1093/ndt/gfaf183/8251659 by guest on 20 O

ctober 2025
INTRODUCTION 

The International Diabetes Federation estimates that 588.7 mil-
lion people worldwide had diabetes in 2024 [1 ]. Of these, 9.2 mil-
lion had type 1 diabetes (T1D). Chronic kidney disease (CKD) is
a common complication of diabetes, developing in ≈30% of peo-
ple with T1D and 40% of people with type 2 diabetes (T2D) [2 , 3 ].

Both CKD and T1D or T2D are associated with an increased risk 
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ril reduced both estimated glomerular filtration rate (eGFR) de-
line and the risk of progression to kidney failure in people with
1D and CKD [6 , 7 ]. Since then, no new drugs to slow the pro-
ression of CKD have become available and people with T1D re-
ain at high residual risk. A registry study of 591 people with T1D
ho had CKD onset between January 2000 and December 2020 re-
orted that the cohort continued to lose kidney function and the
isks of kidney and CV events remained high despite 73% receiving
enin–angiotensin system (RAS) inhibitor therapy [8 ]. Thus there
s an unmet need for novel therapies. 
Clinical trials using validated surrogate outcomes can accel-

rate new therapy development, given that these are smaller
nd have shorter follow-ups than clinical outcome trials. This is
articularly relevant for T1D, where it is challenging to recruit
arge cohorts of participants to record sufficient clinical kidney
utcomes that would enable robust assessment of drug efficacy.
n these settings, a surrogate outcome can serve as a bridging
iomarker to translate evidence from one population to another.
n the case of CKD in T1D and T2D, albuminuria is common in
oth conditions and is a major driver of CKD progression [9 ]. As
uch, changes in albuminuria, typically measured by the urine al-
umin:creatinine ratio (UACR), could be used to extrapolate clin-
cal evidence from one patient population to the other. Here we
escribe the use of UACR as a bridging biomarker to translate ev-
dence of the efficacy and safety of the non-steroidal mineralo-
orticoid receptor antagonist (nsMRA) finerenone from popula-
ions with CKD in T2D to those with CKD in T1D. We compare
he FINE-ONE trial (NCT05901831) population (patients with CKD
nd T1D) with a CKD and T2D population {FIDELITY; a prespeci-
ed pooled analysis of two large phase 3 clinical trials [FIDELIO-
KD (NCT02540993) and [FIGARO-DKD (NCT02545049)]} receiv-
ng optimized doses of ACEi or angiotensin receptor blocker (ARB)
herapy in which finerenone has demonstrated significant re-
uctions in CKD progression and CV events with a manageable
afety profile. 

KD IN PEOPLE WITH T1D 

revalence and risk factors 
everal new studies have recently been published, providing de-
ails on the prevalence of CKD in people with T1D. Among these,
 study of > 23 000 individuals with T1D in a US clinical registry
eported that 27.1% had CKD [3 ]. Higher risks of developing CKD
ere noted among females, older adults, people in certain ethnic
nd racial groups (such as African Americans, Asians and Pacific
slanders) and people with underlying CV disease [3 ]. Additionally,
 study based on data from the Diabetes Control and Complica-
ions Trial/Epidemiology of Diabetes Interventions and Complica-
ions cohort showed that in people with T1D, higher long-term
umulative glycaemic exposure [as measured by updated mean
lycated haemoglobin (HbA1c)] and male sex were independently
ssociated with incident macroalbuminuria [10 ]. Furthermore, an
nalysis from the US National Health and Nutrition Examination
urvey concluded that CKD is common in people with T1D, with
 conservative estimated prevalence of 21.5% (weighted to reflect
he population distribution in the USA) [11 ]. 
CKD and diabetes independently increase the risk of CV dis-

ase outcomes [12 ]. Although this is well recognized in T2D, reg-
stry studies showed that CV disease rates are similarly high in
dults with T1D. For example, a Scandinavian observational study
ncluding ≈540 000 individuals found similarly high rates of CV
isease in T1D and T2D across different age ranges [13 ]. Interest-
ngly, a French study of ≈500 000 hospitalized individuals reported
 lower crude prevalent burden of CV diseases in those with T1D
ompared with T2D; however, rates for both T1D and T2D in-
reased with advancing age, and at middle to older ages the risk of
ncident CV diseases was higher in individuals with T1D [14 ]. This
as also reported in a prospective cohort study of ≈19 000 middle-
ged and older adults with diabetes in the UK, where those with
1D had a higher incidence of cardio-kidney outcomes than those
ith T2D [15 ]. 

athophysiology: differences and similarities 
ersus T2D 

yperglycaemia and hypertension are key risk factors for CKD de-
elopment and progression in both T1D and T2D [2 ]. Together,
hese factors contribute to driving inflammation and fibrosis,
eading to cellular hypertrophy and proliferation, extracellular
atrix expansion, glomerulosclerosis, tubulo-interstitial damage
nd albuminuria [16 ]. MR overactivation is a key part of this pro-
ess, because it upregulates expression of genes associated with
nflammation and fibrosis in the kidney and heart [17 , 18 ]. An
verview of these processes at the cellular and tissue levels is
hown in Fig. 1 . 
While there are clinical similarities between CKD in T1D and

2D, the morphology of the lesions that impact kidney function
ay differ. In T1D, the glomeruli are predominantly affected, re-
ulting in thickening of the glomerular basement membrane and
esangial expansion [19 ]. Podocyte loss and tubulo-interstitial
amage are also frequently observed, along with changes in the
rterioles, which are associated with glomerulosclerosis [19 ]. The
egree of structural lesions and kidney tissue abnormalities vary
ithin and between patients. In patients with T2D, the same tissue
tructure alterations can be involved in the disease pathophys-
ology, but with a higher level of complexity. Biopsy studies have
emonstrated a greater heterogeneity in the underlying kidney
athophysiology in people with T2D compared with the typical
atterns of CKD often associated with T1D [19 ]. Indeed, when
omparing T1D and T2D populations with similar CKD character-
stics, disease duration is often much longer in T1D than T2D. This
uggests either a different rate of kidney damage or involvement
f other factors such as inflammation associated with T2D or
igher blood pressure [20 ]. Nevertheless, irrespective of the pre-
ise pathophysiology of kidney disease in T1D and T2D, albumin-
ria remains a hallmark of the disease and a strong risk marker
f adverse kidney and CV outcomes in both T1D and T2D [9 ]. 

lbuminuria: a common manifestation of CKD in
1D and T2D 

lbuminuria is a common manifestation of kidney disease in
eople with diabetes. Current guidelines recommend screening
nd monitoring of UACR to identify CKD early, and treatments
hat reduce UACR should be initiated to slow CKD progression
5 ]. The cause of albuminuria in CKD is probably multifactorial
nd appears to be the same in T1D and T2D. The glycocalyx,
n important part of the vascular permeability barrier, is dam-
ged by hyperglycaemia, leading to albumin leakage across
he glomerular capillaries and subsequently into the urine
21 ]. Tubulo-interstitial damage (resulting from fibrotic and
nflammatory processes; Fig. 1 ) reduces the capacity for albumin
eabsorption in the proximal tubule [22 ]. Additionally, exposure to
lbumin is toxic to proximal tubular epithelial cells, exacerbating
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Figure 1: Role of MRA activation in the pathophysiology of CKD in T1D and T2D. ECM: extracellular matrix. Figure based on Heerspink HJL et al. 
Diabetes Res Clin Pract 2023;204:110908. https://creativecommons.org/licenses/by/4.0/. [27 ]. 
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tubulo-interstitial fibrosis [23 ], further reducing kidney function.
Thus albuminuria predicts CKD progression and does so in a
similar fashion in both T1D and T2D. 

TREATMENT OF CKD IN T1D AND T2D 

There has been significant progress in the management of CKD
in people with T2D, with three new drug classes shown to re-
duce cardio-kidney risk. These include nsMRAs, sodium–glucose
co-transporter-2 inhibitors (SGLT-2is) and glucagon-like peptide-
1 receptor agonists (GLP-1RAs). Over the past 5 years the clinical
benefits of these agents have been demonstrated on top of exist-
ing treatments, including RAS inhibitors [4 , 5 , 24 ]. 

The nsMRA finerenone significantly reduced adverse kidney
and CV outcomes compared with placebo in FIDELITY [25 ]. The
relative risk reduction of the composite kidney outcome (time
to first onset of kidney failure, sustained ≥57% eGFR decline
from baseline over ≥4 weeks or kidney-related death) was 24%;
components of kidney failure including end-stage kidney disease
(ESKD; chronic dialysis for ≥90 days) or kidney transplantation
and sustained eGFR decline to < 15 ml/min/1.73 m2 were signif-
icantly lower with finerenone than placebo. The composite CV
outcome (time to CV death, non-fatal myocardial infarction, non-
fatal stroke or hospitalization for heart failure) was reduced by
14% [25 ]. Furthermore, finerenone lowered UACR from baseline
to 4 months by 32% versus placebo, an improvement that per-
sisted throughout the trials [25 ]. Subsequent analyses revealed
that the reduction in albuminuria explained 84–87% of the bene-
fit of finerenone in reducing the risk of the kidney composite out-
comes and 37% of its effect on the CV composite outcome, sug-
gesting early reduction in albuminuria as an important indicator 
of the long-term benefit of finerenone [26 , 27 ]. 

Regarding SGLT-2is and GLP-1RAs, similar kidney and CV bene- 
fits in people with CKD and T2D were also reported in clinical tri-
als. In the CREDENCE trial (NCT02065791), canagliflozin reduced 
the risk of the primary composite kidney endpoint (ESKD, sus- 
tained doubling of serum creatinine from baseline for ≥30 days 
or death from renal or CV disease) by 30% versus placebo in
participants with CKD and T2D [28 ]. In the DAPA-CKD trial
(NCT03036150), where 68% of participants had CKD and T2D, da- 
pagliflozin reduced the composite cardio-kidney endpoint (sus- 
tained ≥50% eGFR decline, ESKD or kidney/CV death) by 36% 

in this subpopulation [29 ]. In EMPA-KIDNEY trial (NCT03594110),
there was a 28% reduction in the risk of kidney disease progres-
sion or CV death with empagliflozin in people with CKD, 44% of
whom had T2D [30 ]. More recently, the FLOW trial (NCT03819153)
found that the GLP-1RA semaglutide reduced the primary com- 
posite outcome (onset of kidney failure, sustained ≥50% reduction 
in eGFR from baseline or death from kidney or CV causes) by 24%
in people with T2D and CKD [24 ]. 

Despite recent findings in the CKD population, the lack of new 

therapies for people with T1D contrasts sharply with innovations 
in clinical management for people with T2D. No new drugs to slow
CKD progression in T1D have become available since the land- 
mark Collaborative Study Group Captopril Trial, which demon- 
strated that improved glycaemic control and treatment with 
captopril reduced both eGFR decline and the risk of progression to 
kidney failure [6 ]. Since then, few trials have focused on therapeu-

https://creativecommons.org/licenses/by/4.0/
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ic advancements for this population, with the most recent trial,
reventing Early Renal Function Loss, demonstrating no benefit
or allopurinol treatment on kidney outcomes in people with CKD
nd T1D [31 ]. Neither SGLT-2is nor GLP-1RAs are currently rec-
mmended for use in people with T1D for glucose lowering, and
either class has been thoroughly tested in the T1D population
or CV or kidney outcomes. Although SGLT-2is are indicated in the
SA for treatment of CKD irrespective of diabetes status, they are
ot currently recommended for glucose lowering in T1D due to
afety concerns [32 , 33 ]. As a result, RAS blockade and glycaemic
ontrol with insulin (along with risk factor optimization) remain
he only recommended medical strategies for reducing the risk
f adverse kidney events. However, additional risk remains, par-
icularly among individuals with persistently high albuminuria
8 , 34 ], highlighting the need for new trials and therapies to
educe the risk of kidney disease progression in people with
KD and T1D. 

OLE OF BRIDGING BIOMARKERS 

ranslating evidence from clinical trials 
he use of bridging biomarkers can extend the availability of ther-
pies that have been evaluated and approved in one population
o another in cases where it may be challenging to conduct large
linical trials [35 ]. It also addresses the ethical problem of con-
ucting unnecessary clinical trials and delaying therapy to those
ho would benefit. Biomarkers can be accepted for use as drug
evelopment tools to support regulatory approval if certain condi-
ions are met [36 ]. However, a bridging biomarker can only be used
o extrapolate evidence between populations if it is a valid surro-
ate endpoint (i.e. supported by strong mechanistic evidence and
orrelated with patient outcomes). Furthermore, patient charac-
eristics and expected responses to the drug must be sufficiently
imilar in both populations [35 ]. Extrapolation of therapeutic
enefit from one population to another also relies on established
afety of the approved treatment and a reasonable expectation
hat the safety profile will be similar in the target population.
nsuring comparability between populations in studies using
ridging biomarkers will enable high confidence that clinical
enefit can be reliably translated and justify the extrapolation of
vidence. 

lbuminuria as a bridging biomarker in CKD 

n CKD, bridging biomarkers may be useful for translating the
ealth of evidence from the T2D population to the T1D popula-
ion because, once established, CKD progression is strikingly sim-
lar in both diabetes types. Analyses from observational studies
nd clinical trials have shown that albuminuria is a valid surro-
ate endpoint for future clinical trials, suggesting that it may also
e a useful bridging biomarker. In a global participant-level meta-
nalysis of > 27 million individuals in 114 cohorts, severe albu-
inuria was associated with kidney failure, kidney replacement

herapy, CV mortality, heart failure and atrial fibrillation, and the
ssociation was evident in people with diabetes [37 ]. Other studies
ave shown that the risk relationship between albuminuria and
ardio-kidney outcomes is similar in T1D and T2D. In both popula-
ions, those with macroalbuminuria had a comparable rate of loss
f eGFR [38 ]. In people with T1D, the Diabetes Control and Compli-
ations Trial/Epidemiology of Diabetes Interventions and Compli-
ations study reported worsening cardio-kidney outcomes as al-
uminuria advanced [39 ]. Changes in albuminuria over time have
lso been associated with the risk of subsequent cardio-kidney
utcomes. In a study of almost 700 000 individuals with albumin-
ria data (80% of whom had diabetes), increases in albuminuria
ver 1, 2 or 3 years were linearly associated with an increased risk
f kidney failure and CV outcomes [40 ]. The association was sim-
lar regardless of individuals’ diabetes status. Additionally, an ob-
ervational analysis of > 10 000 individuals with diabetes reported
levated risks of CV events, CV mortality and kidney events as
ACR increased [41 ]. 
Importantly, therapeutic lowering of albuminuria is strongly

ssociated with improved kidney outcomes in people with dia-
etes and CKD [42 ]. Among people with T1D in the Collabora-
ive Study Group trial of captopril, treatment with captopril re-
uced albuminuria within 3 months of initiation and reductions
ere sustained throughout the trial, with significant reductions
eported over 4 years [6 ]. In the same trial, captopril reduced the
isk of kidney outcomes, including death, dialysis or transplan-
ation, by 50%. Trials investigating RAS blockade in people with
2D and CKD reported similar results. The RENAAL (Reduction of
ndpoints in NIDDM with the Angiotensin II Antagonist Losartan)
rial reported reductions in both proteinuria and the rate of kidney
unction decline with losartan compared with placebo [43 ], and
he Irbesartan Diabetic Nephropathy Trial reported significantly
educed proteinuria compared with placebo as well as a reduced
isk of kidney outcomes with irbesartan versus placebo [44 ]. In
 meta-analysis of 41 randomized controlled clinical trials, early
reatment effects on albuminuria were associated with lower risks
f established kidney outcomes. The same meta-analysis also
howed that therapies that reduced albuminuria by 20–30% dur-
ng the first 6 months of treatment were associated with a high
ikelihood of reducing the risk of clinical kidney outcomes during
ong-term treatment [45 ]. 
However, safety is an important consideration when evaluat-

ng albuminuria as a bridging biomarker in CKD, because some
herapies that improve albuminuria may have side effects in the
ew population that did not occur in the original population. For
xample, a meta-analysis of SGLT-2i use in individuals with T1D
eported UACR reductions of 23% [46 ], which is similar to those re-
orted in people with T2D, but increased risks of diabetic ketoaci-
osis, including euglycaemic ketoacidosis, have been reported in
GLT-2i trials in the T1D population [47 ]. For finerenone, current
vidence shows that UACR reduction explains a substantial part
f its benefit on kidney outcomes in T2D [26 ], without impact-
ng glucose levels or inducing side effects that would pose greater
isks to T1D versus T2D populations. 

HE FINE-ONE TRIAL: FINERENONE FOR 

KD AND T1D USING ALBUMINURIA AS A 

RIDGING BIOMARKER 

he FINE-ONE trial was designed to use albuminuria as a clini-
al trial endpoint and bridging biomarker to translate evidence
rom T2D to T1D. The aim is to assess the change in UACR
rom baseline over 6 months along with safety [27 ]. Adults
 ≥18 years of age) with CKD (UACR 200–< 5000 mg/g and eGFR
5–< 90 ml/min/1.73 m2 ), T1D (HbA1c < 10%) and serum potas-
ium ≤4.8 mmol/l who were receiving stable ACEi or ARB ther-
py could participate. Eligible adults ( N = 242) were randomized
:1 to finerenone 10 or 20 mg once daily (participants with eGFR
 60 ml/min/1.73 m2 were initiated on the lower dose with the op-
ortunity to up-titrate after 4 weeks) or placebo (Fig. 2 ) [27 ]. 



H. J. L. Heerspink et al. | 5

Figure 2: FINE-ONE and FIDELITY study designs and baseline KDIGO risk categories. CKD was defined as UACR 200–< 5000 mg/g and eGFR 25–< 90 
ml/min/1.73 m2 in FINE-ONE and UACR 30–< 300 mg/g and eGFR 25 −≤90 ml/min/1.73 m2 or UACR 300–≤5000 mg/g and eGFR ≥25 ml/min/1.73 m2 in 
FIDELITY. Six participants in FIDELITY had missing values (one missing eGFR only, three missing UACR only and two missing both eGFR and UACR. 
*Starting dose 10 mg/day for participants with eGFR ≥25–< 60 ml/min/1.73 m2 and 20 mg/day for participants with eGFR ≥60 ml/min/1.73 m2 . # Other 
prespecified outcomes included time to first occurrence of kidney failure, sustained ≥40% decrease in eGFR from baseline over ≥4 weeks, or 
kidney-related death; time to all-cause mortality; and time to all-cause hospitalization. HHF: hospitalization for heart failure; KDIGO: Kidney Disease: 
Improving Global Outcomes; MI: myocardial infarction; R: randomization. 
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Comparing FINE-ONE and FIDELITY populations 
at baseline 

Table 1 summarizes study details of the FINE-ONE trial and FI-
DELITY pooled analysis. Recruitment for FINE-ONE was com-
pleted in February 2025. Participant baseline characteristics of the
FINE-ONE and FIDELITY cohorts are presented in Table 2 . These
data show that participants in FINE-ONE and FIDELITY had com-
parable kidney function at baseline, as demonstrated by similar
mean eGFR (58.8 and 57.6 ml/min/1.73 m2 , respectively) and me-
dian UACR (549.0 and 515.1 mg/g, respectively). The percentage of
participants with moderate, high and very high cardio-kidney risk,
as predicted by the Kidney Disease: Improving Global Outcomes
(KDIGO) heat map [4 ], were similar, with most participants having
high or very high risk at baseline (88.0% of FINE-ONE participants
and 89.3% of FIDELITY participants) (Fig. 2 ). More than a quarter
of participants in both the FINE-ONE and FIDELITY populations
had UACR levels > 1000 mg/g at baseline, indicating that a sub-
stantial proportion of both populations (CKD with T1D and T2D)
were at high risk of CKD progression. 

One key difference between the FINE-ONE and FIDELITY pop-
ulations was the duration of diabetes (32.0 versus 15.4 years, re-
spectively). Nevertheless, baseline HbA1c values were similar in
the two populations (7.6% in FINE-ONE versus 7.7% in FIDELITY) 
and similar proportions had an HbA1c > 7.5% (47.6% versus 48.3%,
respectively), indicating similar levels of diabetes severity and/or 
control. One possible cause for the difference in disease duration 
is that T2D progresses gradually over time, often going undiag- 
nosed in the early stages of the disease [1 ]. Additionally, T1D is typ-
ically diagnosed at a young age, often in childhood, when the risk
of kidney complications is lower. Over time, however, albumin- 
uria becomes a more common finding among people with T1D. A 

study of registry data from almost 80 000 adults with T1D reported
that approximately one-tenth of people with a diabetes duration 
< 20 years had albuminuria, whereas approximately one-third had 
developed albuminuria after 40 years [48 ]. The prevalence of CKD
in people with T1D thus remains high [3 ], emphasizing the need
for therapies that protect the kidneys in addition to optimal gly- 
caemic control and RAS inhibition. 

A lower proportion of FINE-ONE participants had a history 
of CV disease at baseline compared with FIDELITY participants 
(24.4% versus 45.6%, respectively). This is likely due to the 
lower mean age in the FINE-ONE trial compared with FIDELITY.
The lower prevalence of CV disease may have contributed to a 
lower use of CV disease–related therapies such as beta blockers,
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Table 1: Study details of FINE-ONE and FIDELITY. 

Characteristics FINE-ONE ( N = 242) FIDELITY ( N = 12 990) 

Study design Phase 3, randomized, double-blind, 
placebo-controlled, multicentre clinical trial 

Pooled analysis of two phase 3, randomized, 
double-blind, placebo-controlled, multicentre 
clinical trials 

Inclusion criteria • Age ≥18 years (or legal age of consent according to 
local legislation) 

• Type 1 diabetes (continuously treated with insulin, 
started ≤1 year from diagnosis) 

• HbA1c at screening < 10.0% 

• UACR ≥200–< 5000 mg/g 
• eGFR ≥25–< 90 ml/min/1.73 m2 

• On a stable dose of ACEi or ARB 
• Serum potassium level ≤4.8 mmol/l 

• Age ≥18 years 
• Type 2 diabetes 
• UACR 30–< 300 mg/g and eGFR 
25 −≤90 ml/min/1.73 m2 , or UACR 300–≤5000 mg/g 
and eGFR ≥25 ml/min/1.73 m2 

• Maximum tolerated dose of ACEi or ARB 
• Serum potassium level ≤4.8 mmol/l 

Exclusion criteria • Type 2 diabetes 
• Other known causes of CKD than type 1 diabetes 
• Kidney transplantation 
• Mean BP > 160/100 mmHg or mean systolic BP 

< 90 mmHg at screening 
• Hospitalization due to a CV event ≤4 weeks prior to 
screening 

• Symptomatic heart failure with reduced ejection 
fraction with class 1A indications for MRAs 

• Current or previous ( ≤8 weeks prior to screening) 
treatment with a SGLT-2/1i or GLP-1RA 

• Non-diabetic kidney disease 
• Uncontrolled hypertension 
• HbA1c > 12% 

• Mean BP ≥160/ ≥100 mmHg, or mean SBP 
< 90 mmHg at screening 

• Chronic symptomatic heart failure with reduced 
ejection fraction 

• Recent CV event 
• Dialysis for acute kidney failure 

BP: blood pressure; SGLT-2/1i: sodium–glucose co-transporter-2/-1 inhibitor. 
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iuretics and platelet inhibitors in the FINE-ONE trial. However,
tatin use was similarly high in the two populations (73.6% versus
2.3%, respectively), which may reflect broad recommendations
or their use according to international treatment guidelines. The
merican Diabetes Association and European Association for the
tudy of Diabetes recommend statin use for primary prevention
f CV disease in all people with diabetes > 40 years of age as well
s for secondary prevention of CV events in people with diabetes
nd established CV disease [49 , 50 ]. 
MRAs are associated with an increased risk of hyperkalaemia

ersus placebo [51 ]. In the Benefits of Aldosterone Receptor Antag-
nism in Chronic Kidney Disease (BARACK-D) trial, for example,
% of participants (individuals with stage 3b CKD) treated with
he MRA spironolactone ( n = 677) withdrew from treatment within
 months for hyperkalaemia-related reasons [52 ]. Compared with
teroidal MRAs, which are not recommended for use in CKD [4 ],
nerenone (an nsMRA) has a higher selectivity for the MR, shorter
alf-life and more balanced tissue distribution in the kidneys
nd heart [51 ]. While hyperkalaemia risk remains greater with
nerenone than with placebo, it is clinically manageable. In the FI-
ELITY analysis, potassium levels ≤4.8 mmol/l were required for
nclusion in each of the trials and were monitored throughout the
rials—the incidence of hyperkalaemia-related discontinuations 
r hospitalizations was low [25 ]. Safety assessment in the FINE-
NE trial includes hyperkalaemia monitoring, allowing compari-
on of early changes in potassium. At baseline, potassium levels
ere clinically similar between the FINE-ONE and FIDELITY co-
orts (4.6 versus 4.4 mmol/l, respectively). Given the similarities in
idney function and baseline serum potassium levels between the
INE-ONE and FIDELITY cohorts, the overall adverse event rates
y patient-years are anticipated to be comparable between the
wo populations. Consequently, the likelihood of new or increased
dverse effects in participants with CKD and T1D is expected to

e low. p  
The follow-up duration in the FINE-ONE trial is 6 months,
eaning that the trial cannot assess the long-term effect of
nerenone on UACR and its impact on CV and kidney outcomes.
owever, as described earlier, a post hoc FIDELITY analysis
howed that > 80% of the kidney benefit of finerenone is ex-
lained by a UACR reduction within 4 months of treatment
nitiation [26 ]. Similar mediation results were observed in a more
estricted analysis including only participants with the same
nclusion criteria as the FINE-ONE trial (UACR ≥200–< 5000 mg/g
nd eGFR 25–< 90 ml/min/1.73 m2 ) [27 ]. Notably, the American Di-
betes Association guideline recommends reducing albuminuria
y ≥30% in people with CKD and albuminuria levels ≥300 mg/g
o slow CKD progression [5 ]. This recommendation is relevant for
he T1D population as recruited in the FINE-ONE trial, in which
4% of participants have a UACR ≥300 mg/g at baseline. This sug-
ests that an early UACR reduction after 6 months of finerenone
reatment in FINE-ONE will likely translate into longer-term
linical benefits on kidney outcomes. Additionally, albuminuria
s associated with increased CV risk, and UACR reductions have
een associated with lower risks of CV events [53 ]. Assuming
nerenone has similar albuminuria-lowering effects in T1D and
2D, the similarities evident in the FINE-ONE and FIDELITY popu-
ations at baseline support efficacy comparisons between the two
opulations in accordance with the bridging biomarker concept. 

ONCLUSIONS AND FUTURE DIRECTIONS 

hile the pathophysiological mechanisms associated with CKD
n T1D and T2D are similar, there is a stark difference between
he availability of therapeutic options for these two populations.
iven the comparable CKD pathophysiology and cardio-kidney
isks, improving kidney and CV outcomes in people with CKD and
1D may require a more intensive, multifactorial therapeutic ap-
roach, similar to that recommended for T2D. This should involve
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Table 2: Baseline characteristics and measurements (clinical and biochemical) in FINE-ONE and FIDELITY. 

Characteristics FINE-ONE ( N = 242) FIDELITY ( N = 12 990) 

Age (years), mean ± SD 51.6 ± 13.7 64.8 ± 9.5 
Male, n (%) 158 (65.3) 9058 (69.7) 
Race, n (%) 
White 173 (71.5) 8869 (68.3) 
Black/African American 15 (6.2) 520 (4.0) 
Asian 48 (19.8) 2860 (22.0) 
Other a 6 (2.5) 741 (5.7) 

Region, n (%) 
Europe 120 (49.6) 5862 (45.1) 
North America 83 (34.3) 2049 (15.8) 
Asia 39 (16.1) 3170 (24.4) 
Latin America – 1434 (11.0) 
Other b – 475 (3.7) 

Weight (kg), mean ± SD 80.7 ± 20.8 88.1 ± 20.1 
BMI (kg/m2 ), mean ± SD 27.6 ± 6.0 31.3 ± 6.0 
Medical history 
Duration of diabetes (years), mean ± SD 32.0 ± 14.2 15.4 ± 8.7 
History of CVD 

c , n (%) 59 (24.4) 5928 (45.6) 
History of hypertension, n (%) 207 (85.5) 12 531 (96.5) 

Medication use d , n (%) 
ACEi 112 (46.3) 5076 (39.1) 
ARBs 128 (52.9) 7904 (60.8) 
Diuretics 87 (36.0) 6701 (51.6) 
Beta blockers 66 (27.3) 6499 (50.0) 
Statins 178 (73.6) 9387 (72.3) 
Platelet aggregation inhibitors e 76 (31.4) 7296 (56.2) 

Clinical measurements 
Systolic blood pressure (mmHg), mean ± SD 135.2 ± 16.7 136.8 ± 14.2 
Diastolic blood pressure (mmHg), mean ± SD 77.5 ± 10.8 76.4 ± 9.6 

Biochemical measurements 
HbA1c (%), mean ± SD 

f 7.6 ± 1.1 7.7 ± 1.4 
HbA1c category (%), n (%) f 

≤7.5 124 (51.2) 6696 (51.5) 
> 7.5 116 (47.9) 6272 (48.3) 

UACR (mg/g), median (IQR) 549.0 (298.8–1190.7) 515.1 (198.1–1148.3) 
UACR category (mg/g) n (%) g 

< 300 63 (26.0) 4311 (33.2) 
≥300–1000 113 (46.7) 4871 (37.5) 
> 1000 66 (27.3) 3803 (29.3) 
eGFR (ml/min/1.73 m2 ), mean ± SD 58.8 ± 19.1 57.6 ± 21.7 

eGFR category (ml/min/1.73 m2 ), n (%) h 

< 25 5 (2.1) 162 (1.2) 
25–< 45 58 (24.0) 4224 (32.5) 
45–< 60 62 (25.6) 3426 (26.4) 
60–< 90 107 (44.2) 3857 (29.7) 
≥90 10 (4.1) 1318 (10.1) 

Serum potassium (mmol/l), mean ± SD 4.6 ± 0.4 4.4 ± 0.4 

a American Indian or Alaska native, Hawaiian or other Pacific Islander or not reported or multiple. 
b Australia, New Zealand or South Africa. 
c History of CVD was determined by the presence of one of the following in the medical history: myocardial infarction, coronary artery stenosis, cerebrovascular 
accident, transient ischaemic attack, peripheral arterial occlusive disease or cardiac failure. 
d Use of SGLT-2is and GLP-1RAs was not permitted in the FINE-ONE trial. 
e Excluding heparin. 
f Values missing for 2 FINE-ONE and 22 FIDELITY participants. 
g Values missing for five FIDELITY participants. 
h Values missing for three FIDELITY participants. 
BMI: body mass index; CVD: cardiovascular disease; IQR: interquartile range; SD: standard deviation. 
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both further research to reveal new therapeutic targets in T1D and
repurposing of current drugs. Trials like FINE-ONE provide an op-
portunity to address CKD in the T1D population by allowing clin-
ical findings from people with T2D to be translated to T1D. 
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